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Abstract 

Background Infrared molecular fingerprinting has been identified as a new minimally invasive technological tool 
for disease diagnosis. While the utility of cross‑molecular infrared fingerprints of serum and plasma for in vitro cancer 
diagnostics has been recently demonstrated, their potential for stratifying and predicting the prognosis of lung can‑
cer remained unexplored. This study investigates the capability of this approach to predict survival and stratify lung 
cancer patients.

Methods Molecular fingerprinting through vibrational spectroscopy is employed to probe lung cancer. Fourier‑
transform infrared (FTIR) spectroscopy is applied to blood sera from 160 therapy‑naive lung cancer patients, who were 
followed for up to 4 years. Machine learning is then utilized to evaluate the prognostic utility of this new approach. 
Additionally, a case‑control study involving 501 individuals is analyzed to investigate the relationship between FTIR 
spectra and disease progression.

Results Overall, we establish a strong correlation between the infrared fingerprints and disease progression, specifi‑
cally in terms of tumor stage. Furthermore, we demonstrate that infrared fingerprinting provides insights into patient 
survival at performance levels comparable to those of tumor stage and relevant blood‑based biomarkers.

Conclusions Identifying the combined capacity of infrared fingerprinting to complement primary lung cancer diag‑
nostics and to assist in the assessment of lung cancer survival represents the first proof‑of‑concept study underscor‑
ing the potential of this profiling platform. This may provide new avenues for the development of tailored, personal‑
ized treatment decision‑making.

Keywords Lung cancer, Infrared molecular fingerprinting, Survival analysis, Prognostic biomarker, Liquid biopsy

*Correspondence:
Kosmas V. Kepesidis
kosmas.kepesidis@physik.uni‑muenchen.de
Mihaela Žigman
mihaela.zigman@mpq.mpg.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-025-03924-3&domain=pdf


Page 2 of 15Kepesidis et al. BMC Medicine  (2025) 23:101

Background
Lung cancer remains a major cause of cancer-related 
mortality worldwide [1], necessitating the development 
of robust diagnostic and prognostic tools to guide treat-
ment decisions and improve patient outcomes. Its high 
mortality is frequently associated with aggressive histo-
logical subtypes and late diagnosis with consecutively 
limited treatment options. Thus, efforts to improve pre-
vention, early detection, and treatment outcomes are 
crucial to reducing the burden of this disease.

A variety of promising lung cancer molecular candi-
date biomarkers (autoantibodies, complement fragments, 
microRNAs, circulating tumor DNA, DNA methylation, 
blood protein and metabolite profiling) [2–7] have been 
demonstrated to aid diagnosis of lung cancer, either in 
combination or in the absence of low-dose computed 
tomography (LDCT) screening [8]. However, the diag-
nostic value, clinical cost-effectiveness, analysis time and 
need for repetitive procedures remain relevant factors 
limiting the implementation of available approaches for 
clinical routine [9].

For these reasons, there is an unmet need for addi-
tional less-invasive diagnostic tests to facilitate prognos-
tic stratification in patients with lung cancer [10]. Given 
the advantages of infrared molecular spectroscopy for 
in  vitro analytical profiling [11], the approach has the 
potential in the detection of cancer [12]. Infrared (IR) 
spectroscopy detects how molecules absorb IR radiation 
at frequencies matching their vibration modes. These 
unique absorption patterns, characteristic of molecular 
structures, are recorded in the IR spectrum, providing 
a molecular overview of the sample. The method is fast, 
cost-effective, and label-free. The advantages of label-free 
fingerprinting include reduced sample preparation time 
and costs, minimizing the potential for artifacts intro-
duced by labeling agents, preserving the native state of 
the sample, simplifying experimental implementation, 
and enabling real-time profiling. When applied to blood 
serum or plasma samples, it delivers an infrared molec-
ular fingerprint (IMF) reflecting the chemical compo-
sition of a sample, that is, the person’s molecular blood 
phenotype [13, 14]. It provides a discovery platform with 
opportunities to identify further biomarkers for lung can-
cer detection [15].

This blood-based, label-free, cost-feasible, and time-
efficient approach to delivering IMFs could be utilized to 
build classification models for the stratification of lung 
cancer. It was this far only used for the detection of many 
solid tumors in pilot studies involving brain [16–18], 
breast [12, 19–23], bladder [12, 24], lung [12, 25], pros-
tate [12, 26], and other cancer entities [24, 27, 28], with 
some of the studies reporting very high sensitivities and 
specificity values [16, 19, 21, 24, 26, 27].

Our previous studies have established molecular pro-
filing of venous blood serum and plasma with infrared 
fingerprinting, aided by machine learning, as a new tool 
to detect lung cancer [12]. We also demonstrated high 
robustness and the ease of infrared bulk fluid measure-
ments, along with its low costs and time efficiency [13], 
and the possibility to expand the understanding of infra-
red fingerprints to individual molecules [15].

Relevant to lung cancer in vitro diagnostics, our previ-
ous study revealed that IMFs correlate with tumor size 
[12]. However, due to the smaller cohort size available, 
we were previously not in a position to assess the possible 
correlation between the blood-based IMFs and relevant 
tumor, node, metastasis (TNM) staging that is essen-
tial for initial diagnosis and treatment planning of lung 
cancer.

Building on the established, here we evaluate the 
value of infrared fingerprinting as a possible new plat-
form technology to asses TNM stage and patient’s sur-
vival rates at therapy-naive states, along with established 
blood-based markers. To the best of our knowledge, 
our study evaluated for the first time the relationship 
between IMFs and lung cancer patient survival that could 
be beneficial to further improve clinical diagnosis, treat-
ment, and survival of lung cancer patients [29].

The current study aimed to analyze the relationship 
between IMFs, lung cancer stages, and patient survival 
along with further clinical parameters. For this reason, 
we: i) used a well-characterized large-volume cohort of 
lung cancer patients undergoing curative resections or 
palliative chemotherapy, ii) generated IMFs of blood sera 
reflecting the underlying multi-molecular physiological 
mechanisms of the disease, iii) investigated the correlation 
between IMF and disease progression, and iv) assessed 
the information content of IMFs concerning overall sur-
vival by comprehensive statistical survival modeling.

The capacity of IMF to predict lung cancer survival, as 
well as its relation to disease progression, may provide 
additional information for personalized diagnosis and 
treatment.

Methods
Ethics statement
This study is based on blood samples of lung cancer 
patients derived from the Asklepios biobank of lung 
diseases under project number 333-10 and study proto-
col number 17–141. Included control individuals pro-
vided written informed consent for the study under 
research study protocol number 17–182. Both research 
protocols were approved by the Ethics Committee of 
the Ludwig-Maximillian-University (LMU) of Munich. 
Our study complies with all relevant ethical regulations 
and was conducted according to Good Clinical Practice 
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(ICH-GCP) and the principles of the Declaration of Hel-
sinki. The clinical trial is registered (ID DRKS00013217) 
at the German Clinical Trials Register (DRKS). The fol-
lowing clinical centers were involved in subject recruit-
ment and sample collections of the clinical study: the 
Department of Internal Medicine V for Pneumology and 
the Asklepios Lung Clinic (Gauting), affiliated with the 
Comprehensive Pneumology Centre (CPC) Munich, and 
the German Centre for Lung Research, DZL; the Depart-
ment of Urology and the Department of Obstetrics and 
Gynecology, LMU University Hospital, LMU Munich. 
Information on the full breakdown of study participants 
presented is listed in Table  1.. From the existing data-
set, the recorded IMFs were selected for further analysis 
according to the following criteria: Only data from cancer 
patients with clinically confirmed carcinoma of the lung, 
before any cancer-related therapy were considered.

Study cohort characteristics
For the survival analysis, in total 160 (predominantly) 
non-small-cell lung cancer (NSCLC) patients were 
enrolled in this study (see left part of Table 1.). Out of 
them, 84 were censored. The two groups exhibit simi-
larities in terms of their age, gender, and body-mass-
index (BMI) distributions, as shown in Table  1. (first 
part of left subtable). Information on performed sur-
gery during the study was collected in follow-up visits. 
This information is presented in 1  (second part of left 
sub-table). Full staging information according to the 
TNM Classification of Malignant Tumors (Union for 
International Cancer Control (UICC) [30], was cap-
tured only partially. Information on the distribution of 
stages for both the censored and not censored patient 
groups is presented in Table  1. (third part of left sub-
table). Patients with unavailable staging information 
were excluded from the stage-related analysis but were 
included in all other evaluations. In terms of tumor 
histology [30], a relative balance is observed between 
squamous cell carcinoma (SCC) and adenocarcinoma 
(AC). Also, a few cases of large-cell carcinoma (LCC) 
were enrolled. While the cohort consists predominantly 
of these three histological subtypes of NSCLC, patients 
with rare or unknown histological subtypes are present 
as well (see last part of Table 1.).

For the classification analysis in terms of stage, a total 
number of 501 individuals were included in the case-
control study. This corresponds to the 317 cases and 
184 healthy control individuals. Information on study 
participants is presented in Table  1. (right sub-table). 
It needs to be stated that 133 healthy individuals were 
included as controls in more than one case-control 
design for different stages. For the classification analy-
sis, the lung cancer cases were stratified in terms of 

tumor stage and matched to appropriate control indi-
viduals based on sex, age, and BMI.

Study setup and workflow
This study aims to assess the information content of 
blood-based IMF for disease progression and survival 
outcomes among lung cancer patients. For this reason, 
two studies (cohort and case-control) were designed (see 
Fig. 1a).

A systematic approach was used to select eligible 
patients and also include matched controls for the study. 
Individuals who were diagnosed with lung cancer were 
enrolled, and samples were collected before any can-
cer-related treatment. Relevant clinical and pathologi-
cal data from medical records were collected, including 
patient demographics, tumor characteristics, treatment 
regimens, and follow-up information. Blood sera were 
collected according to well-defined standard operat-
ing procedures to minimize pre-analytical errors [13]. 
An automated sample delivery system was applied for 
high-throughput, high-reproducibility, and cost-efficient 
infrared fingerprinting of liquid sera with an FTIR spec-
trometer (see Fig. 1b).

Inclusion criteria encompassed patients diagnosed 
with primary lung cancer, before any cancer-related 
treatment and regardless of the cancer stage. For the 
survival analysis, patients who reached the end of the 
study without experiencing their death were classified as 
censored [31]. On the other hand, patients whose death 
was observed during the study were classified as non-
censored. Patients with missing or incomplete censor-
ship status were excluded from the study. A total of 160 
lung cancer patients were included in this cohort study. A 
case-control study was constructed to investigate disease 
progression. Patients with missing or incomplete staging 
information were excluded to ensure the integrity of the 
analysis. 317 lung cancer patients met the inclusion crite-
ria and were included in the final analysis.

Comprehensive data on patient demographics, clini-
cal characteristics, tumor features, and treatment details 
were collected and managed in a standardized fash-
ion. This involved reviewing medical records, pathology 
reports, and treatment data. Data variables of interest 
included age, gender, BMI, tumor stage, histological sub-
type, cancer-related treatment modalities (e.g., surgery, 
chemotherapy), and survival outcomes (overall survival). 
Patient follow-ups were conducted on-site during post-
treatments according to the standard clinical protocol. 
Survival outcomes (overall survival) were recorded at 
the end of the study, approximately 4 years after the start 
(see Fig. 1c). Overall patient survival was defined as the 
time from diagnosis until death from any cause or the 
last follow-up visit. Patients who were either alive at the 
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end of the study (and at the start of data analysis) or lost 
to follow-up were classified as censored. Non-censored 
patients were individuals for whom we could identify the 
date of death and thus evaluate the duration of survival 
from the time of sampling and primary diagnosis.

Statistical analysis was performed using appropriate sur-
vival analysis methods to evaluate the relationship between 
various factors (cancer stage, biomarkers, IMF, etc.) and 
patient survival outcomes. Kaplan-Meier survival curves 
were generated to estimate survival probabilities over 
time, stratified by relevant variables such as tumor stage, 

treatment modality, and tumor histology. Log-rank tests 
were conducted to compare survival curves and assess the 
significance of differences between subgroups. To identify 
independent prognostic factors associated with survival 
outcomes, multivariable Cox proportional hazards regres-
sion analysis was performed. Apart from IMF, this analysis 
also considered various covariates, including age, gender, 
tumor stage, and molecular markers captured via clinical 
chemistry. Corresponding 95% confidence intervals (CIs) 
were calculated to quantify the strength of associations 
between each covariate and survival outcomes.

Fig. 1 Outline of study design and workflow and main results. a Flow chart showing the structure of the study. b Infrared spectra of blood sera. 
The plot shows absorbance per wave number, in the mid‑infrared domain, for all lung cancer patients involved in the study. c Study lifelines 
of participating patients, indicating i) the time from the blood sampling at the primary lung cancer diagnosis until the end of the study for censored 
patients and ii) until the time of death for non‑censored study participants
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In addition to survival analysis, a larger case-control 
study (similar to our previous work [12]) was designed 
to evaluate the performance of IMF-based classification 
models concerning disease diagnosis and investigate the 
effect of disease progression on the corresponding ROC 
curves. In this study, healthy (asymptomatic) volunteers 
were included as controls. Control individuals were sta-
tistically matched to the lung cancer cases based on age, 
gender, and BMI.

Sample collection and storage
Venous blood samples were collected, processed to sera, 
and stored according to the same standard operating pro-
cedures. Blood draws were all performed using Safety-
Multifly needles of at least 21 G (Sarstedt) and collected 
with 4.9 ml serum Monovettes (Sarstedt). Before cen-
trifugation, serum tubes were stored upright for at least 
20 minutes to ensure blood coagulation. Centrifugation 
was performed at 2000 g for 10 min at 20°C within three 
hours after blood donation. The supernatant was manu-
ally aliquoted into 0.5 ml fractions and frozen within 
two hours after centrifugation. Samples were stored at 
−80°C in the clinics, transported to the analytical labora-
tory on dry ice, and again stored at −80°C until sample 
pre-processing.

Sample handling and FTIR measurements
To prepare samples for FTIR measurements, one 0.5 ml 
aliquot of serum per sample was thawed in a water bath 
at 4°C, carefully vortexed, and again centrifuged for 10 
min at 2000 g. Subsequently, four to six small-volume ali-
quots were generated and refrozen at −80°C. The volume 
of these aliquots varied over time between 50 µ L and 90 
µ L. Independently of the aliquoted volume, 35 µ L of the 
sample was injected into the measurement cuvette. The 
90 µ l aliquots allowed direct re-measurement in FTIR 
in case of any instrument issue. All the FTIR measure-
ments were performed upon two freeze-thaw cycles. 
The samples were measured in a fully randomized order 
together with other samples. The samples were aliquoted 
and measured in a blinded fashion, that is, the person 
performing the measurements had no access to the clini-
cal information of the study participants. For infrared 
spectroscopic measurements, a commercial FTIR device 
specialized in the analysis of liquid samples in transmis-
sion mode was used (MIRA-Analyzer, CLADE GmbH, 
formally known as Micro-Biolytics GmbH). The flow-
through transmission cuvette was made of CaF2 windows 
with 8 µ m optical path length. The spectra were acquired 
with a resolution of 4  cm−1 in a spectral range between 
950  cm−1 and 3050  cm−1. A water reference spectrum 
was recorded automatically after each sample measure-
ment to reconstruct the IR absorption spectra. The actual 

path length was also determined automatically at each 
measurement, and the spectra were adjusted accord-
ingly. FTIR measurements were performed in batches of 
25 samples with a quality control serum (pooled human 
serum, BioWest, Nuaillé, France) measured at the begin-
ning of the batch and after five samples, each, resulting in 
a batch size of 31 samples. The use of the quality control 
samples allowed tracking of potential technical errors 
and drifts over the entire measurement period [32]. If an 
air bubble was present during the measurement, this was 
immediately noticeable by the saturation of the detector. 
In such cases, the measurement was considered faulty. 
For 90µ L aliquots, the measurement was repeated at the 
end of the batch using the original aliquot. For 50µ L ali-
quots, a new aliquot had to be thawed. Those re-meas-
urements were typically performed in one of the next 
batches.

Pre‑processing of infrared absorption spectra
The MIRA analyzer tends to overcompensate the sam-
ple’s infrared spectrum concerning water, as plasma con-
tains about 10 percent of solid matter. For that reason, a 
preprocessing was performed according to our previous 
work [12]. In brief, a reference water spectrum was added 
to undo the overcompensation, spectra were truncated 
to 1000–3000  cm−1 and the ‘silent region’, between 1850 
 cm−1 and 2800  cm−1, was removed. Finally, all spectra 
were normalized using Euclidean (L2) norm.

Survival analysis methods
The survival analysis was performed using the lifelines 
package (v.0.27.4) [33]. For estimating the survival prob-
ability function, the Kaplan-Meier method was used. 
Kaplan-Meier estimator is one of the most widely used 
non-parametric techniques for modeling survival distri-
butions [34]. For testing the significance of differences 
between survival functions, the log-rank test was used. 
The log-rank test is a large sample chi-square ( χ2 ) test 
that compares two or more Kaplan-Meier curves. To 
build predictive models based on multiple spectral fea-
tures, the Cox proportional hazards method was used 
[34]. The evaluations were performed within a 10-fold 
cross-validation using Harrell’s C-index (also known 
as the concordance index) as the performance metric. 
Within each split, a grid search was conducted on the 
training fold to explore various hyperparameter combi-
nations. For each hyperparameter combination, we used 
a 3-fold cross-validation nested inside the grid search to 
evaluate Harrell’s C-index. Subsequently, the best-per-
forming model on the training fold was assessed on the 
test fold using Harrell’s C-index once again. C-index is a 
goodness of fit measure for models which produce risk 
scores. It is commonly used to evaluate risk models in 
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survival analysis, where data may be censored [35–37]. 
Values of C-index near 0.5 indicate that the risk score 
predictions are no better than a coin flip in determin-
ing which patient will live longer. Values near 1 indicate 
that the risk scores are good at determining which of two 
patients will have the disease first.

Statistical matching in case‑control study
Achieving covariate balance between cases and controls 
is crucial in observational studies to neutralize confound-
ing factors and minimize bias. In this study, we matched 
cases and controls based on sex, age, and BMI using opti-
mal pair matching with Mahalanobis distance within 
propensity score calipers [38]. The implementation was 
carried out in R (v. 3.5.1).

Binary classification and ROC curves
To derive classification models, we used Scikit-Learn 
(v.1.1.3) [39], an open-source machine learning frame-
work in Python (v.3.9.13). We trained binary classifica-
tion models using logistic regression. We trained binary 
classification models using logistic regression. To prop-
erly validate our models, we did a performance evalua-
tion with 10-fold cross-validation, visualizing the results 
with ROC curves. The models were regularized using L2 
norm regularization, with the corresponding regulariza-
tion factor determined through grid search within the 
cross-validation process. The results of the cross-valida-
tion are reported in terms of descriptive statistics, that is, 
the mean and the standard deviation of the resulting dis-
tribution of AUC values and mean ROC curves.

Differential fingerprints
To visualize the information patterns associated with dif-
ferences between cases and controls in a case-control set-
ting, we employed the concept of differential fingerprints, 
as described in previous studies [12, 13, 15]. Differential 
fingerprints represent the mean difference per wave-
number between cases (e.g., lung cancer patients) and 
control individuals. The shaded area on the background 
corresponds to the standard deviation of the controls. A 
larger magnitude of the differential fingerprint indicates 
a greater difference between cases and controls, result-
ing in a stronger difference of spectroscopically measured 
information for a machine learning algorithm to use in 
distinguishing between the two groups.

Binormal model for ROC curves
The influence of disease progression on the ROC curve 
was modeled in Stata (v. 17.0) using the package st0155 
[40]. Assuming that the distributions of classification 
scores underlying the ROC curve are transformable to 
normality using a strictly increasing transformation, the 

classical model of binormal ROC curves can be applied: 
ROC(t) = �(α0 + α1�

−1(t)) , where � is the standard 
normal cumulative distribution function, t is the false 
positive rate, and α0 and α1 are the intercept and slope of 
the curve, respectively. Using this framework, the ROC 
curve was modeled as a function of covariates using the 
approach of generalized linear models (GLM) for ROC 
curves, known as ROC-GLM regression [41]. Math-
ematically, models of this kind have the following form: 
g(ROCZ(t)) = h0(t)+ βZ , where h0(·) is the baseline 
function, g(·) is the link function, and Z is the covari-
ate vector with corresponding parameters β . Both h0(·) 
and g(·) are monotone increasing (or decreasing) func-
tions on (0, 1) such as � , ensuring the GLM represents 
a ROC curve. The GLM was fitted using a semiparamet-
ric approach and parameter estimates for the covari-
ate’s influence on intercept and slope were evaluated by 
bootstrapping (1000 bootstrap samples, separate sam-
pling from cases and controls). The significance of the 
estimates was assessed through p-values calculated from 
Wald statistics [40]. The classification scores underlying 
this analysis were obtained from a support vector classi-
fier trained and evaluated using leave-one-out cross-vali-
dation in Scikit-Learn [39].

Learning curves
To compute learning curves, the classifier under inves-
tigation was trained on randomly selected subsets of 
varying sizes of the available data. For each subset, the 
performance was evaluated using the AUC. This proce-
dure was repeated 5 times for each sample size and the 
results averaged. Then, following [42], an inverse power 
law model was fitted to the obtained learning curves.

Results
Patient survival analysis
As a first step, we quantitatively investigate survival rates 
in our cohort, without the involvement of IMF. For this, 
an established Kaplan-Maier (KM) estimator, one of the 
most widely used non-parametric techniques for mod-
eling survival distributions, was applied.

Figure  2 shows the resulting survival probability as a 
function of time concerning different levels of nominal 
and ordinal covariates. To provide a general overview 
of the study, we apply the survival function for all study 
patients involved, and further provide survival in depend-
ence of gender status (Fig. 2a). In this case, the two gen-
der-specific curves deviate only slightly from the baseline 
(pulled analysis). A statistical comparison between the 
two gender-specific curves, based on log-rank test-
ing (see Methods section), yielded a large p-value of 
p = 0.41 . Comparing the gender-specific survival curves 
of our cohort with the survival rates for the whole of 
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Germany as provided by the Robert Koch Institute [43], 
these very results reflect comparable trends. Women still 
have slightly better overall survival than men, independ-
ent from the UICC stage at the time of primary diagno-
sis. However, it is known that the gender-specific survival 
rates progress in opposite directions: For a few decades 
now, the survival rates for females have a declining rate, 
whereas the rates for males have risen continuously over 
the same period and now have come close to those of 
females. This different development can be attributed to 
the change in smoking habits since the end of the 1990s 
and is likely to continue.

We further investigated whether the survival func-
tion of individuals reveals any difference for patients 
with operable versus non-operable tumors (see Fig. 2b). 
As expected, we find that the differences are signifi-
cant. Performing statistical significance testing yields a 

p-value of p < 0.005 . This means that patients with oper-
able tumors have significantly larger survival chances. 
When investigating whether the TNM stage correlates 
with survival, we expectedly found that individuals with 
primary diagnosis at lower TNM stage survive longer 
than individuals where the TNM stage was higher at the 
time of primary diagnosis (see Fig. 2c). The significance 
comparison in this case revealed significant differences 
between stage IV and the rest of the stages. A detailed 
presentation of the related p-values is further given in 
Additional file 1: Table S4. This observation on the exist-
ing cohort reflects the trends in Germany, where the sur-
vival curves also decrease dramatically with advanced 
UICC stages: The 5-year relative survival for UICC stage 
I patients is 73 percent for females and 63 percent for 
males, whereas only 7 percent of females and 4 percent of 

Fig. 2 Survival analysis based on single covariate using Kaplan‑Meier estimation. a Survival functions for all study patients, and survival functions 
separately by gender status (female ‑ blue line; male ‑ red line; combined ‑ black line). b Survival functions for patients with operable (blue line) 
and non‑operable (red line) lung cancer tumors. c Stratified survival functions by TNM staging (stage I ‑ blue; stage II ‑ violet; stage II ‑ black; stage IV 
‑ red line). d Stratified survival functions concerning lung cancer tumor histology (squamous cell carcinoma ‑ blue line; adenocarcinoma ‑ red line)
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males live longer than 5 years after being diagnosed with 
a metastasizing stage IV lung carcinoma [43].

Infrared fingerprints and lung cancer progression
We previously showed that the size of the main tumor 
diameter in lung cancer patients correlates with IMF 
deviations [12]. In the current study, we set out to spe-
cifically investigate whether the deviations of IMF corre-
late with the TNM stages at diagnosis in the population 
under investigation. Figure  3 shows the strong relation 
between the IMFs and lung cancer progression. Spe-
cifically, in Fig. 3a we plot the differential fingerprint for 
different matched lung cancer case-control groups (con-
trols are non-symptomatic healthy volunteers), stratified 
in terms of the TNM stage. We observe that disease-
related patterns span a broad spectral range. In particu-
lar, the range between 1000  cm−1 and 1700  cm−1 contains 
informative patterns related to numerous potential bio-
molecules. This region has been conventionally associ-
ated with the absorbance of proteins and carbohydrates, 
including glycosylated proteins. Thus, changes in this 
region could be due to alterations in their concentration, 
structure, or glycosylation pattern. Most importantly, our 
results reveal that the strength of the lung cancer pattern 
in the blood serum, as measured via blood serum IMFs, 
correlates with the tumor stage along the entire range 
of observed wavenumbers. This is evident in the differ-
ential fingerprints, where the amplitude of the observed 
pattern consistently increases with disease progression 
while the overall pattern remains unchanged. To further 
investigate this relationship, using the created strati-
fied matched cohorts, we build classification models to 
evaluate the capacity to distinguish between lung cancer 
cases and control individuals separately for each tumor 
TNM stage. Figure 3b shows the resulting empirical ROC 
curves for each stage. The observed relation between the 
strength of the differential fingerprint and disease pro-
gression propagates to the predictive models. Although 
stage II lung cancer patients can be classified with an 
AUC of ROC higher than 0.70, we observe a further 
increase in the capacity of the candidate medical test to 
detect lung cancer with higher stages. However, from this 
analysis, it cannot be determined whether the increase in 
test performance is caused by disease progression or an 
increased number of available samples for stages III and 
IV. To further address and investigate this, we proceed 
with rigorous modeling of the effect of stage on the ROC 
curve. Specifically, we make use of the so-called binor-
mal model of the ROC curve [41]. This model allows for 
rigorous investigation of covariate effects (in this case 
the TNM stage) via generalized linear regression models 
(GLM). The resulting binormal ROC curves displayed in 
Fig.  3c show a trend fully consistent with the empirical 

results. Furthermore, we calculated the p-value for the 
hypothesis that the coefficient β , which captures the 
influence of the lung cancer stage on the binormal ROC 
curve (see Methods section), is zero. Since this p-value 
is well below 0.05, we can reject the hypothesis and con-
clude that the influence of the lung cancer stage on the 
ROC curve is significant. Thus, we uncover a systematic 
increase of a possible IMF-based diagnostic test for lung 
cancer detection to detect lung tumors with higher effi-
ciency when already progressed to later stages.

Our results provide a relevant extension as well as par-
tially independent confirmation of the previously pub-
lished study on correlating tumor size and the extent of 
infrared fingerprint aberrations [12] – that the IMF cap-
tures tumor-specific patterns in blood sera. As the size 
of the training data increases, machine-learning models 
tend to exhibit greater robustness. Consequently, one can 
anticipate an increase in the AUC for each specific dis-
ease stage. In Fig. 3d, we seek to illustrate this phenome-
non by employing a learning curve fitted with a saturation 
function, as detailed in a previously published work [42]. 
We observe that, with the increased size of train data, the 
detection performance for non-metastatic as well as stage 
IV (metastatic) cases saturate above AUC=0.9. Neverthe-
less, the disparity in final AUCs between metastatic and 
non-metastatic groups appears to stabilize, indicating a 
finite difference at the limit of large sample sizes. Beyond 
evaluating classification performance through AUCs, it is 
possible to measure the overall disease-specific pattern 
captured by the IMF. This can be achieved by computing 
the mean effect size, which corresponds to the differences 
in absorbance between the two groups across all wave-
numbers. In Fig. 3e, the representation of the mean effect 
size per stage is presented. A distinct pattern emerges, 
indicating a consistent and notable increase in the differ-
ential fingerprint magnitude with disease progression.

Infrared fingerprinting and lung cancer patient survival
Having demonstrated the relation between the ampli-
tude of IMF deviations and lung cancer progression, we 
proceeded to investigate whether IMF can predict the 
future survival of lung cancer patients, based on IMF 
analyses at the time of primary diagnosis. To this end, 
we fit patient survival regression models using Cox 
proportional-hazards, based on the IMF data. To assess 
the prognostic utility of these models and to compare 
them to models based on other covariates, such as 
TNM staging, we evaluate their performance using the 
method of k-fold cross-validation. The performance 
was measured using Harrell’s C-index - defined as the 
proportion of observations that the model can order 
correctly in terms of survival times (see Methods sec-
tion), with 0.5 indicating random chance and a value 
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Fig. 3 Assessment of information content of IMF concerning disease progression. a Differential infrared spectra, showing the mean difference 
per wavenumber between measured data of lung cancer patients of different stages and age‑ and gender‑matched healthy control individuals. 
The shaded area corresponds to the standard deviation per wavenumber in the control group. b Empirical ROC curves (and the corresponding AUC 
values) for the binary classification between lung cancer patients (of different stages) and matched healthy control individuals. The classification 
was performed using logistic regression within 10‑fold cross‑validation. c Modeled covariate effect of the predicted lung tumor stage on the ROC 
curve using a generalized linear model (ROC‑GLM). See the Methods section for more details. d Learning curves for mean AUC, for the binary 
classification between lung cancer patients and matched healthy control individuals (experimental data depicted as blue dots; Stage I, II, III ‑ orange 
fit line; Stage IV ‑ dark red fit line). e Mean effect size indicating the overall average differences between infrared fingerprints of cases (of different 
stages) and controls
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of 1.0 corresponding to perfect prediction [44]. Using 
all 160 patients, a C-index of 0.63 ± 0.12 is achieved, 
indicating that survival information is indeed encoded 
in the IMFs. Although tempting to speculate that some 
spectral positions would be more informative than 
others, we find that the overall outcome of regression 
capacity is not based on specific infrared spectral fea-
tures, but rather utilizes information from the entire 
spectral range. To get a more general evaluation of the 
informational content and capacity of IMFs from liquid 
biopsies, we directly compared the capacity of other 
diagnostic approaches with IMFs - directly, within the 
same individuals - for their capacity to capture lung 
cancer. Table  2 shows the results of the performance 
comparison between IMF and medically established 
lung cancer markers, as well as histopathological tissue 
biopsy (current diagnostic benchmark) for predicting 
the survival of lung cancer patients. The comparison 
is done by evaluating Harrell’s C-index on trained Cox 
regression models within a 10-fold cross-validation. We 
find that the capacity of IMFs to predict the survival of 
lung cancer patients at primary diagnosis is on par with 
the capacity of histopathological examination (stage) 
that requires invasive tissue sampling. Moreover, it is 
very encouraging to reveal that the IMFs’ capacity is 
on par with other biomarkers implemented in clinical 
diagnostics (e.g., NSE (neuron-specific enolase), CEA 
(carcinoembryonic antigen) CYFRA-21-1 (cytokeratin-
fragment-21-1)), revealing the validity and the potential 
of the evaluated approach. We further analyze the sur-
vival information encoded in the IMFs. Here we inves-
tigate how spectra of non-censored individuals, who 
passed away within either 1, 2, or 3 years from primary 
diagnosis, differ from the censored patients. In Fig. 4a, 

the graphical representation illustrates the differential 
infrared spectra. This depiction highlights the average 
variance per wavenumber among the recorded data of 
lung cancer patients without censoring, whose demise 
is observed within 1, 2, or 3 years post the initial diag-
nosis. The control group in this context comprises 
censored patients. The shaded region encapsulates the 
standard deviation per wavenumber within the control 
group. These results newly identify that the closer a 
patient is to eventual death, the more pronounced the 
lung cancer-specific pattern detected via IMF. The same 
conclusion can be drawn by calculating the effect size 
(averaged across all wavenumbers) as shown in Fig. 4b. 
Information on the patient groups included in this 
analysis is given in Additional file 1: Table S5.

To further investigate the capacity of the hazard pre-
diction by the IMF-based Cox regression models, in 
terms of the initial stage of patient diagnosis, we used 
predicted hazard rates as a relative gauge of mortality 
risk. In Fig. 4c, we illustrate the association between the 
distribution of hazard rates based on IMFs and the tumor 
TNM stage. Our findings reveal a noticeable trend (still 
not statistically significant), with the risk of mortality, as 
indicated by IMF analysis, exhibiting an increase with 
higher stages. This trend is better quantified by correla-
tion analysis. By direct calculation one obtains a Point-
Biserial correlation between hazard ratios and stage, 
which in this case is ρ = 0.31 with a p-value p = 0.02 . 
Even if not a fully significant result, the observed correla-
tion reaffirms the above-established association between 
IMFs and disease progression. In addition, we explore the 
relation between the predicted hazard rates and the time 
to observed death, for non-censored patients. Figure 4d 
shows a scatter plot of the value of the hazard rates, for all 
76 non-censored patients included in the cohort, against 
time to event. We observe a clear correlation between the 
hazard rates and the time to event. This is also confirmed 
by direct calculation of the Pearson correlation, which in 
this case is ρ = 0.56 with a p-value p = 1.5× 10

−7.

Discussion
The potential of liquid biopsies to contribute to survival 
outcome prediction and to possibly aid in stratifying lung 
cancer patients has been anticipated [45]. However, the 
technical limitations for the clinical utility of liquid biop-
sies for early-stage NSCLC have still not been solved [46]. 
Infrared spectroscopy - which provides multi-molecular 
information in a cost- and time-effective manner - carries 
great potential for minimally invasive analysis, and has 
not been evaluated for this application before. We previ-
ously revealed that infrared molecular fingerprinting has 
a fair capacity to detect four common cancers based on 
spectroscopy of venous blood plasma and serum [12]. In 

Table 2 Performance comparison between infrared molecular 
fingerprint (IMF) information, and diagnostically established 
lung‑cancer markers for predicting lung cancer patients’ survival 
performed on the same patients’ blood samples

The number of patients varies across evaluations since not all blood-based 
parameters were obtained for all of the 160 patients that were included in the 
cohort study. Therefore, the IMF evaluation for the largest population is given 
first (n:160), with further comparisons of IMF’s performance with different 
established analytes (on smaller sample sets). The comparison is performed by 
evaluating Harrell’s C-index on trained Cox regression models within a 10-fold 
cross-validation

Parameter C‑index Markers C‑index IMFs # Patients

IMFs 0.63 ± 0.12 160

Stage 0.67 ± 0.16 0.68 ± 0.12 95

NSE 0.64 ± 0.15 0.65 ± 0.12 132

CEA 0.59 ± 0.18 0.66 ± 0.12 147

CYFRA‑21‑1 0.72 ± 0.10 0.68 ± 0.10 144

Hemoglobin 0.57 ± 0.10 0.64 ± 0.09 159

Leukocytes 0.63 ± 0.12 0.64 ± 0.09 159



Page 12 of 15Kepesidis et al. BMC Medicine  (2025) 23:101

the present study, we extend the paradigm and evaluate 
whether infrared fingerprinting of liquid biopsies has any 
power to predict possible patient outcomes at the time 
of primary diagnoses, specifically focusing on survival. 
We analyze 160 treatment-naive lung cancer patients, 
follow them over time, and quantify the survival rates of 
84 censored and 76 non-censored individuals. This is the 
first example that IMF has been robustly evaluated for 
survival prognostication of any cancerous lesion. Inter-
estingly, we find that our approach is statistically on par 
with histopathological stage information and established 
diagnostic molecular markers to predict the survival of 
lung cancer patients. Furthermore, we showed that IMF 
could be conceptually considered as a set of markers that 

when combined are associated with patient outcomes, 
such as disease progression, and survival.

A limitation of the present study is that the approach 
has only been evaluated on a single, albeit fairly sizable 
cohort. To address this, we are planning an independ-
ent validation study to test whether this in vitro profiling 
assay would work well on individuals with diverse genetic 
and lifestyle factors. Additionally, therapeutic efficiency 
and effects related to single or combined lung cancer 
therapies that patients receive have certainly contrib-
uted to the observed survival rates. In the present com-
parisons, we have pooled individuals receiving various 
medications and did not evaluate their impact, which is 
beyond the scope of the current study. Nevertheless, all 

Fig. 4 Assessment of information content of IMF concerning patient survival. a Differential infrared spectra, showing the mean difference 
per wavenumber between measured data of non‑censored lung cancer patients whose death is observed within 1, 2, or 3 years after the first 
diagnosis. The control group, in this case, corresponds to censored patients. The shaded area corresponds to the standard deviation 
per wavenumber in the control group. b Mean effect size indicating the overall average differences between fingerprints of non‑censored 
and censored lung cancer patients. The non‑censored patients are stratified as in panel (a). Information on the cohort characteristics used 
in the analysis presented in panels (a) and (b) is provided in Additional file 1: Table S5. c Box plots depicting the distributions of hazard rates, 
predicted by the IMF‑based Cox regression models, stratified by different tumor stages. This analysis is based on 95 lung cancer patients 
with available tumor stage information at the time of diagnosis, as described in Table 1.. d Scatter plot showing the value of the hazard rates for all 
76 non‑censored patients included in the cohort against time to event
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patients received the best available therapy, making them 
sufficiently comparable for the analyses performed in this 
study.

Another area where IMFs could be instructive is the 
stratification of individuals at a higher risk of develop-
ing lung cancer [47]. Plasma-based omics have already 
been shown to provide a means to predict individuals 
at higher risk of future lung cancer [48, 49]. Our results 
could make a significant contribution in this avenue if 
evaluated and tested in longitudinal settings. One poten-
tial advantage is that the IMFs could provide insight both 
into the individual’s risk of lung cancer and a means of 
detecting imminent early-stage disease. IMF may have 
an advantage here - as other tests that rely on biomark-
ers released by cancer cells into blood face the challenge 
of low abundance in early-stage disease. Furthermore, 
they are also less likely to reflect inherent cancer risk in 
the same way as biomarkers that capture host factors by 
our “molecularly holistic” approach covering - e.g., smok-
ing-induced damage or immune response to precursor 
lesions and early tumors.

Conclusions
This study highlights the potential of infrared molec-
ular fingerprinting as a novel, minimally invasive 
tool for predicting survival outcomes and assessing 
disease progression in treatment-naive lung cancer 
patients. By evaluating IMFs from a well-charac-
terized cohort, we demonstrated that this approach 
offers predictive capabilities comparable to his-
topathological staging and established molecular 
markers. Importantly, this is the first investigation 
to robustly link IMF profiles to survival outcomes in 
cancer, showcasing its promise as a diagnostic and 
prognostic aid.

Our findings underscore the utility of IMFs in captur-
ing the complex molecular landscape of lung cancer, 
which may reflect not only tumor-specific factors but also 
host responses and disease-related physiological changes. 
This holistic profiling approach holds particular promise 
for addressing current limitations in liquid biopsy tech-
nologies, especially in the context of early-stage disease 
and survival prognostication.

Nevertheless, further validation studies are needed 
to confirm the generalizability of these results across 
diverse populations and clinical settings. Future research 
should also explore the integration of IMF-based analy-
ses with therapeutic monitoring and risk stratification 
tools to enhance their clinical applicability. By advancing 
this field, IMF technology could contribute to improving 
early detection, personalized treatment planning, and 
ultimately, patient outcomes in lung cancer.
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