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Abstract 

Background  Early detection of cancer can help patients with more effective treatments and result in better prog-
nosis. Unfortunately, established cancer screening technologies are limited for use, especially for multi-cancer early 
detection. In this study, we described a serum-based platform integrating surface-enhanced Raman spectroscopy 
(SERS) technology with resampling strategy, feature dimensionality enhancement, deep learning and interpretability 
analysis methods for sensitive and accurate pan-cancer screening.

Methods  Totally, 1655 early-stage patients with breast cancer (BC, n = 569), lung cancer (LC, n = 513), thyroid cancer 
(TC, n = 220), colorectal cancer (CC, n = 215), gastric cancer (GC, n = 100), esophageal cancer (EC, n = 38), and 1896 
healthy controls (HC) were enrolled. The serum SERS spectra were obtained from each participant. Data dimension 
enhancement was conducted by heatmap transformation and continuous wavelet transform (CWT). The dimension-
alization SERS spectral data were subsequently analyzed by residual neural network (ResNet) as convolutional neural 
network (CNN) algorithm. Class activation mapping (CAM) method was performed to elucidate the potential biologi-
cal significance of spectral data classification.

Results  All participants were divided into a training set and a test set with a ratio of 7:3. The BorderlineSMOTE 
method was selected as the most appropriate resampling strategy and the deep neural network (DNN) model 
achieved desirable performance among all groups (accuracy rate: 93.15%, precision rate: 88:46%, recall rate: 85.68%, 
and F1-score: 86.98%), with the generated AUC values of 0.991 for HC, 0.995 for BC, 0.979 for LC, 0.996 for TC, 0.994 
for CC, 0.982 for GC, and 0.941 for EC, respectively. Furthermore, the combination use of SERS spectra data and ResNet 
(form of heatmap) were also capable of effectively distinguishing different categories and making accurate 
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predictions (accuracy rate: 94.75%, precision rate: 89.02, recall rate: 86.97, and F1-score: 87.88), with the AUC values 
of 0.996 for HC, 0.995 for BC, 0.988 for LC, 0.999 for TC, 0.993 for CC, 0.985 for GC, and 0.940 for EC, respectively. Addi-
tionally, strong wave number range of the spectral data was observed in the CAM analysis.

Conclusions  Our study has offered a highly effective serum SERS-based approach for multi-cancer early detection, 
which might shed new light on cancer screening in clinical practice.

Keywords  Multi-caner early detection, Serum, Raman spectroscopy, Deep neural network, Convolutional neural 
network

Background
Cancer is one major public health issue worldwide. For 
now, the global cancer burden is increasing rapidly, with 
approximately 19.3 million new cancer cases and 10.0 
million cancer deaths estimated in 2020 [1]. It is well 
acknowledged that early cancer detection could help 
identify new cases with more effective treatment and 
reduce patient’s economical burden [2]. Current can-
cer screening paradigms have been widely used in clini-
cal practice, such as mammography for breast cancer 
(BC) [3], colonoscopy for colorectal cancer (CC) [4], and 
low-dose computed tomography (CT) for lung cancer 
(LC) [5]. Nevertheless, these screening methods are only 
designed for specific cancer type which are not valid for 
multi-cancer detection. In recent years, liquid biopsy-
based methods, including cell-free DNA (cfDNA) [6], 
circulating tumor DNA (ctDNA) [7], proteins [8], metab-
olites [9], and cell-derived exosomes [10] have shed new 
light for simultaneous pan-cancer screening and increase 
the number of patients who are detected at earlier stages. 
However, assays based on these tests are of high cost and 
in demand of strict laboratory quality control. Therefore, 
the development and validation of a robust, low-cost, and 
easily repeated method for early cancer prediction are 
still necessary.

Raman is a molecular vibrational spectroscopic tech-
nique where a laser beam is directed onto the sample 
surface. A Raman spectrum can provide specific infor-
mation of the tested sample, with changes in the quali-
tative and quantitative composition of a sample can lead 
to conversions of the Raman peak intensities, shapes, and 
locations [11]. Surface-enhanced Raman spectroscopy 
(SERS) is an enhancement method with nano-scaled 
metal substrates to increase the intensity of Raman scat-
tering [12]. Numerous studies have demonstrated signifi-
cant advances in SERS analysis based on human serum 
samples for detection of multiple cancer types, including 
breast [13–16], liver [17, 18], lung [19, 20], colon [21], 
and prostate cancer [22]. Despite of high sensitivity and 
selectivity, these studies only focus on limited cancer 
types with insufficient samples, which could not allow 
for validation and comprehensive large sets of data analy-
sis. In addition, the reported SERS detection methods 

also included some patients with advanced stages, which 
might impact the sensitivity and accuracy of prediction. 
Meanwhile, the one-dimensional nature of early multi-
cancer SERS spectral diagnostics poses a limitation on 
the application scope of deep learning algorithms. Hence, 
transforming spectral data into two-dimensional images 
holds some potential significance and applications. This 
approach aids researchers in visually analyzing the char-
acteristics of different wavelengths associated with early 
cancer, while better aligning with the input require-
ments of convolutional neural networks. Moreover, lev-
eraging interpretability analysis techniques can assist in 
understanding the decision-making behavior of neural 
networks in image classification tasks. Thus, a highly 
effective strategy with large-volume of clinical samples 
and efficient fitting algorithm is in critical need for multi-
cancer early detection.

In this research, we assessed the performance and 
robustness of a SERS-based platform by integrating a 
large-scale dataset of 1655 early stage cancer patients 
and 1896 healthy controls. This proof-of-concept study 
provides a novel blood-based approach for sensitive and 
accurate pan-cancer screening.

Methods
Study design and population
This observational study was a retrospective analysis 
from Fujian Medical University Union Hospital between 
March 2021 and May 2023. Totally, 1655 patients diag-
nosed with breast cancer (BC, n = 569), lung cancer (LC, 
n = 513), thyroid cancer (TC, n = 220), colorectal cancer 
(CC, n = 215), gastric cancer (GC, n = 100), esophageal 
cancer (EC, n = 38), and 1896 healthy controls (HC) were 
enrolled. The inclusion criteria of eligible cancer patients 
were as follows: (I) diagnosed with early-stage cancer 
(stage 0, I, and II) with pathological confirmation; (II) 
no history of other malignant tumors; (III) treatment-
naive before blood collection. Cancer staging was evalu-
ated according to the 8th edition of the American Joint 
Committee on Cancer (AJCC) staging system. Healthy 
controls were frequency-matched to the cancer patients 
by gender or age (± 5 years) and randomly selected from 
persons who conducted routine health examinations. 
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The recruitment of this study was approved by the ethics 
committee of Fujian Medical University Union Hospital, 
China (No. 2021KY003, 2021KY004). Informed consent 
was obtained from each participant.

Sample preparation
Peripheral blood from each participant was collected 
with a serum collection tube (BD Biosciences). Serum 
was separated within 2 h after collection by a centri-
fuge at 2500 rpm (10 min, 4 ℃) and subsequently stored 
at − 80 ℃ until further analysis. In this study, the method 
of incubation with silver nanoparticles (AgNPs) as an 
enhanced substrate for SERS detection was adopted [23]. 
Specifically, 4.5 ml of 0.1 M NaOH solution was mixed 
with 5 ml of 0.06 M hydroxylamine hydrochloride solu-
tion thoroughly and rapidly poured into 90 ml of 1.1 mM 
AgNO3 solution. The reaction was stirred at room tem-
perature until a colorless transparent solution changed 
to a milky gray silver colloid solution. The silver colloid 
was then centrifuged and the supernatant was discarded. 
Finally, 5 μl of serum was mixed with 5 μl of the silver 
colloid and dropped onto a grooved pure aluminum 
plate, followed by air-drying for SERS detection. The sil-
ver colloid prepared in our study exhibited an absorption 
peak at 425 nm with a half-width of 100 nm. As shown 
in Additional file 1: Figure S1, the average particle size of 
the prepared silver nanoparticles was approximately 40 
nm observed by the transmission electron microscopy 
image. Throughout the entire process of silver colloid 
preparation, precautions were taken to prevent foreign 
particles like dust from entering the colloid solution to 
avoid colloidal sedimentation and inefficiency.

Raman measurement
The high-throughput SERS detection platform applied in 
this study was built in our laboratory which consists of 
an RMS1000 portable Raman spectrometer and a driver 
with stepper motors as the X–Y screw slide. Spectral 
signals were collected with the Raman spectrometer via 
a computer (Additional file  1: Figure S2). The measure-
ment platform scanning spacing between the X–Y rows 
and columns was 16 mm, with accuracy of 25 um and a 
Z-axis height of 7.5 mm, of which the maximum meas-
uring stroke is 200 mm*200 mm. The measurement time 
of single sample ranged from 5 s (single measurement) 
to 50 s (multiple re-measurements), and the maximum 
throughput of a single measurement was 100 samples. 
Serum samples from individuals were tested, and the col-
lection range was between 200 cm−1 and 3000 cm−1 with 
a laser power of 20 mW. Four SERS signals from four dif-
ferent positions of each sample were collected with the 
integration time of 3000 ms. In order to remove abnor-
mal samples caused by charge coupled device (CCD) 

saturation or cosmic rays, the outlier detection algorithm 
was then applied and the remaining spectra were aver-
aged to obtain one SERS spectrum for each sample.

Data preprocessing
The spectral preprocessing procedure in this study 
includes the following steps: spectral cropping, base-
line correction (including smoothing), normalization 
and outlier detection. Typically, Raman signals of bio-
logically significant molecules are distributed within 
the wavenumber range of 400–1800 cm−1, necessitat-
ing spectral cropping. Subsequently, background cor-
rection was performed using a multi-polynomial fitting 
algorithm (the Vancouver Raman algorithm from the 
BC Cancer Research Center) to reduce interference from 
fluorescence background [24]. Additionally, the Vancou-
ver algorithm includes a curve smoothing function with 
adjustable sliding window size, which effectively filters 
noise and cosmic rays. Next, to eliminate the impact of 
spectral intensity changes between different spectra on 
data analysis and modeling, all Raman spectra involved in 
the same system need to undergo a data scaling process 
after subtracting the intrinsic fluorescence background 
from the original spectra, resulting in normalized Raman 
spectra with an integrated area of 1 to correct for spec-
tral differences induced by systematic errors. Finally, to 
remove abnormal spectra caused by sample anomalies, 
PCA-DBSCAN algorithm is employed in this study to 
process spectral outliers.

Statistical analysis
All statistical analyses were performed by Python pro-
gramming software (https://​www.​python.​org, version 
3.7). Imblearn library (version 0.0) was used for sample 
resampling strategy. PyTorch library (version 1.12.1) and 
torchcam library (version 0.3.2) were utilized for deep 
learning and image interpretability. The visualization of 
Raman spectral and feature peak was implemented by 
Origin software (version 2021, OriginLab). In order to 
eliminate the impact of imbalanced sample quantities 
on model performance, we conducted resampling on the 
training set with SMOTE, ADASYN, BorderlineSMOTE, 
SMOTEENN, and SMOTETomek by different power-law 
based modulation factors. Preliminary validation was 
carried out with a deep neural network (DNN) to identify 
optimal resampling method. Spectral data was dimen-
sionally augmented by heatmap or continuous wavelet 
transform (CWT) transformation to better suit convo-
lutional neural network (CNN) models. Transfer learn-
ing was applied with the ResNet18 network model for 
image classification. Finally, class activation map (CAM) 
analysis was employed to interpret the obtained images 

https://www.python.org
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and understand the behavior of the model in classifying 
serum SERS spectra.

Results
Participants’ baseline characteristics
Totally, 3551 participants (including 1655 early stage 
cancer patients and 1896 healthy controls) were 

enrolled from Fujian Medical University Union Hos-
pital between March 2021 and May 2023. For cancer 
group, there were 569 cases of breast cancer, 513 cases 
of lung cancer, 220 cases of thyroid cancer, 215 cases 
of colorectal cancer, 100 cases of gastric cancer, and 38 
cases of esophageal cancer (Fig. 1).

Fig. 1  Schematic diagram of serum SERS multi-cancer detection architecture. A Type of cancers enrolled in this study. B Serum collection and silver 
colloid preparation. C SERS spectrum acquisition. D Mean SERS spectra for each category of serum. E Resampling of the training set samples. F 
Deep neural network model. G Spectral data dimensionalization. H Convolutional neural network model. I Model evaluation. J Interpretability 
analysis of the convolutional neural network



Page 5 of 16Lin et al. BMC Medicine           (2025) 23:97 	

SERS spectral analysis
In this study, the silver nanoparticles (AgNPs) were used 
as an enhanced substrate for SERS detection and a total 
of 3551 spectra were obtained. As shown in Fig. 2A, the 
SERS spectra of all serum were averaged by category and 
the spectral peaks of healthy controls, breast cancer, lung 
cancer, thyroid cancer, colorectal cancer, gastric cancer, 
and esophageal cancer patients were similar. In order to 
highlight the diversities among the groups, we obtained 
the difference spectra of cancer patients and healthy 
controls (Fig. 2B). It could be clearly observed that there 
are obvious differences in the characteristic peaks and 
intensities of each spectrum, indicating that there are 
distinct signals in SERS spectrum which can be used for 
cancer screening. It was also noted that there were mul-
tiple characteristic peaks in these seven types of serum 
samples (Fig. 3A), including 454, 494, 592, 609, 638, 708, 
729, 788, 813, 854, 886, 922, 1012, 1134, 1208, 1286, 1580, 
and 1662 cm−1. By peak analysis, significant differences 
among each category could be easily identified. These 
characteristic peaks could characterize specific com-
ponents such as lipids, proteins, and nucleic acids. The 
common spectral peak attributions are listed in Table 1, 
which evidently supports the biological basis of differen-
tial signals in SERS spectra. Additionally, we further pre-
sented the intensity of spectral characteristic peaks by a 
heatmap (Fig. 3B) to visually demonstrate the differences 

and the most apparent characteristic peaks were dis-
played in a box and scatter diagram (Fig. 3C). As shown 
in the diagram, significant differences could be discov-
ered in the mean value or intensity distribution range at 
specific peaks of 494, 638, 813, 922, 1012, 1134, and 1662 
cm−1 for different types of serum samples. The presence 
of these characteristic peaks indicated that SERS spec-
tra analysis could provide novel information and act as a 
powerful tool for the early screening of cancer.

Sample resampling
Considering the imbalanced distribution for each type 
of cancer sample in this study, a highly effective and 
robust resampling method is essential. Therefore, we 
firstly divided the sample into a training set and a test set 
with a ratio of 7:3. The resampling was then performed 
with the training set specifically. This partitioning could 
ensure that there were enough data for model training 
and evaluation without compromising the independ-
ence of test set. The resampling approaches consisted of 
oversampling methods (SMOTE, ADASYN, and Bor-
derlineSMOTE) and the combination of oversampling 
and undersampling methods (SMOTEENN and SMO-
TETomek). In the resampling process, we referred to the 
power-law-based distribution strategy and introduced 
modulation factor γ which was described in our previous 
research [25]. The power-law distribution function could 

Fig. 2  SERS spectra and difference spectra of each category
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instruct the synthesis of the minorities in an appropriate 
scale, without generating either insufficient number of 
samples that induce model-biased learning or superflu-
ous samples that lead to overlapping classification, thus 

improving the generalization performance of the model. 
The generated dataset size after resampling with γ set to 
0.6, 0.85, and 1.0 are shown in Table 2.

Fig. 3  The characteristic peaks of each category. A Spectral characteristic peak. B Signal intensity heatmap of characteristic peak. C Box and scatter 
diagram of specific peak position
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DNN classification based on resampling model
In order to comprehensively evaluate the influence of dif-
ferent resampling methods and modulation factors on 
classification results, we adopted deep neural network 
(DNN) for preliminary verification. Since the input data 
contained 646 wave numbers, we chose the input layer 
to contain 646 nodes. In the hidden layer, 1500 neurons 
were selected and set up four hidden layers to ensure that 
the model could learn and extract the complex features 
of the data. To train and verify the model, we conducted 
1200 training epochs. In the training process, the learn-
ing rate was set to 1 × 10−5 and Adam algorithm was con-
ducted to dynamically adjust the learning rate of each 
parameter to improve the convergence speed and per-
formance of the model. Simultaneously, we employed 
the cross-entropy loss function to measure the closeness 
between the actual and expected output, and updated 
the gradient of the neural network by backpropagation. 
The probability of the output layer was then calculated 
by the Softmax function and the final classification label 
was obtained. Indicators of accuracy rate, precision rate, 
recall rate, and F1-score were utilized for a comprehen-
sive assessment of the model’s performance. Definition 
and explanation of evaluation indicators are shown in 
Additional file 1: S1 and Table S1. After preliminary veri-
fication, it was indicated that the BorderlineSMOTE had 
the best effect on oversampling the training set (Table 3). 
Especially when the modulation factor γ was set to 0.85, 
the classification results reached the most ideal state 
(accuracy rate: 93.15%, precision rate: 88:46%, recall rate: 

85.68%, and F1-score: 86.98%), compared with the raw 
data set (accuracy rate: 89.12%, precision rate: 85.33%, 
recall rate: 85.68%, and F-1 score: 78.63%. Therefore, the 
BorderlineSMOTE method was selected as the final resa-
mpling strategy and the original or resampling training 
set with different modulation factor (γ = 0.6, 0.85, and 1) 
was shown in Fig. 4A. For better observing the distribu-
tion of samples, Kernel principal components analysis 
(PCA) was applied to reduce the dimension of datasets 
(Fig. 4B). PC1 and PC2 principal components were acted 
as the horizontal and vertical coordinates, respectively. 
The confusion matrix of the training or test set (Fig. 4C, 
D) and the receiver operating the characteristic curves 
(ROC) (Fig.  4E) were further constructed to demon-
strate the classification effect in detail. All datasets exhib-
ited satisfying distinguishment from each type of cancer 
patients to healthy controls. When γ was set to 0.85, the 
DNN model achieved the best performance among all 
imbalanced classes and only a few samples were misclas-
sified. The computed area under the curve (AUC) values 
were 0.991 for healthy controls, 0.995 for breast cancer 
patients, 0.979 for lung cancer patients, 0.996 for thy-
roid cancer patients, 0.994 for colorectal cancer patients, 
0.982 for gastric cancer patients, and 0.941 for esopha-
geal cancer patients, respectively.

Data dimension enhancement
Traditional Raman spectral data is one-dimensional and 
only some general machine learning algorithms or deep 
neural networks could be used, which limits the research 

Table 1  Serum SERS bands positions and tentative vibrational mode assignments

Peak position (cm−1) Major assignment Peak position (cm−1) Major assignment

494 Arginine 922 proline, valine, protein backbone

592 Ascorbic acid, amide-VI 1012 Phenylalanine

638 L-tyrosine, lactose 1134 D-mannos

729 Adenine, coenzyme A 1208 L-tryptophan, phenylalanine

813 L-serine, glutathione 1580 Guanine, Adenine

886 Glutathione, D-(C)-galactosamine 1662 α-helix, collagen

Table 2  The generated dataset for the resampling training set

Category HC BC LC TC CC GC EC

Raw data 1896 569 513 220 215 100 38

Test set 569 171 154 66 65 30 11

Training set 1327 398 359 154 150 70 27

Over sampling γ = 0.6 1327 938 765 663 593 541 501

Over sampling γ = 0.85 1327 1165 1080 1023 981 948 921

Over sampling γ = 1 1327 1327 1327 1327 1327 1327 1327
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on its classification algorithms. To further improve the 
interpretability and classification ability of SERS spectral 
data in multi-cancer early detection, convolutional neu-
ral network (CNN) was utilized in current study for its 
favorable performance in computer vision fields. Conse-
quently, dimensionalization was carried out to convert 
one-dimensional spectral data into two-dimensional 
images to better adapt to the characteristics of CNN. 
We utilized two approaches to achieve data dimension 
enhancement.

The first method was to obtain the corresponding two-
dimensional image data by mapping the spectral data 
into the color space. By selecting an appropriate color 
mapping scheme and using a gradient color map, rela-
tive numerical values can be displayed to better highlight 
the features of the data. Specifically, the spectral intensity 
with each wave number corresponded to a color value 
and the horizontal coordinate was the wave number 
range of the spectrum (400–1800 cm−1), thus generating 
the corresponding two-dimensional image. As shown in 
Additional file  1: Figure S3, the spectral signal intensity 
was firstly mapped to values ranging from 0 to 255, and 
then transformed into RGB (red, green, blue) colors using 
the Jet color mapping table. The transformed image will 
sequentially display colors from blue, cyan, green, yellow, 
orange to red based on the spectral signal intensity from 
low to high.

The second method was to process the spectral signal 
with a continuous wavelet transform (CWT), an algo-
rithm derived from the Fourier transform, where the 
wavelet was a waveform with a finite duration and an 
average of zero. By decomposing signals using wavelet 

transforms, signals with different frequencies can be 
obtained, facilitating the analysis of signal time–fre-
quency characteristics. The transformation principle is 
illustrated in Additional file  1: Figure S4. With different 
scaling coefficients, CWT could translate the spectral 
signal and convolve it with the signal to be measured to 
obtain the frequency information of the signal. This pro-
cess converted the time-domain features of the original 
signal into frequency-domain features which effectively 
generated one-dimensional data into two-dimensional 
images. The wavelet transformation formula is defined as 
follows, where ψ is the wavelet signal and the third-order 
derivative signal of Gaussian Wavelet was selected as the 
wavelet signal.

The two-dimensional images obtained by these two 
methods were transmitted to the convolutional neural 
network for spectral signal classification. We processed 
the one-dimensional spectral data of the oversampling 
training set and the test set respectively, resulting in 7445 
training images and 1066 test images. The original spec-
trum is shown in Fig.  5A. By heatmap transformation, 
we used jet colormap from matplotlib library to trans-
form the spectral intensity and the colors appeared blue 
to red from low to high (Fig. 5B). In the image generated 
by CWT, the horizontal coordinate was the offset time 
which was the same as the signal length of 400–1800 

CWT (a, b) =< f ,ψa,b >=
1
√
a

+∞

−∞
f (t) · ψ

t − b

a
dt

ψ(t) = diff (e−
t2

2 , 3)

Table 3  DNN classification results of each resampling strategy with different modulation factor

Resampling strategy Modulation factor γ Accuracy Precision Recall F1-score

Raw 89.12 85.33 75.34 78.63

SMOTE 0.6 91.56 85.58 85.45 85.44

0.85 92.03 88.36 84.23 85.69

1 92.59 88.40 85.07 86.60

ADASYN 0.6 92.03 84.64 85.23 84.88

0.85 93.06 87.70 85.27 86.41

1 92.31 86.18 84.85 85.50

BorderlineSMOTE 0.6 92.12 85.97 82.74 84.12

0.85 93.15 88.46 85.68 86.98

1 93.06 88.36 84.06 85.91

SMOTEENN 0.6 88.84 80.17 83.34 81.64

0.85 89.96 81.93 84.17 82.96

1 89.68 83.77 84.93 84.09

SMOTETomek 0.6 92.31 85.92 85.18 85.43

0.85 92.87 87.80 85.93 86.80

1 92.78 86.54 84.86 85.61
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Fig. 4  Classification results by DNN with BorderlineSMOTE algorithm. A Bar graph shows the original or resampling training set with different 
modulation factor (γ = 0.6, 0.85, and 1). B Distribution with kernal PCA analysis. C The confusion matrix for training set. D The confusion matrix 
for test set. E ROC curves for all categories
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cm−1, and the vertical coordinate represented the scale 
(Fig. 5C). These two image processing methods provided 
the expression of different features of the spectral data 
and offered more diverse input information for the fol-
lowing analysis.

Residual neural network analysis
For convolutional neural network, we applied resid-
ual neural network (ResNet) to analyze the generated 
images. ResNet is known for introducing residual learn-
ing blocks and invented a shortcut connection for degra-
dation, which greatly eliminated the problem of gradient 
vanishing and training neural networks with too much 
depth. The ResNet18 model was employed with a depth 
of 18 layers network and its network structure is shown 
in Additional file  1: Figure S5. We firstly set the index 
number of the category and build a mapping diction-
ary, where HC, BC, LC, TC, CC, GC, and EC were set to 
0, 1, 2, 3, 4, 5, and 6 in sequence. Next, the DataLoader 
was defined to extract 4 images for each time. To prevent 
overfitting, the data order was shuffled after each epoch 
to ensure training diversity. Additionally, the Adam opti-
mizer was chosen for updating model parameters. The 
learning rate was adjusted to half of its original value 
every 20 epochs, and the cross-entropy loss function 
was used for model optimization. A total of 160 epochs 
of training were conducted, and the model with the 
highest accuracy on the test set was ultimately selected. 
The classification results of the two dimension enhanc-
ing methods were verified and indicated that the use of 
ResNet as convolutional neural network achieved better 

classification performance than deep neural network in 
our task (Table 4). To be noticed, both methods achieve 
good performance, in which the image in the form of 
heatmap was slightly better than the image of the wavelet 
transform, possibly because the form of heatmap could 
express the characteristic information for the spectral 
data more intuitively. The confusion matrix for the test 
set of ResNet (form of heatmap) was displayed in Fig. 6A 
and the test process was visualized in Fig.  6B, C. The 
computed area under the curve (AUC) values were 0.996 
for healthy controls, 0.995 for breast cancer patients, 
0.988 for lung cancer patients, 0.999 for thyroid cancer 
patients, 0.993 for colorectal cancer patients, 0.985 for 
gastric cancer patients, and 0.940 for esophageal cancer 
patients, respectively (Fig. 6D–K). In addition, the accu-
racy, precision, recall, and F1-score of each category are 
shown in the Fig.  6L–O. The performance for the test 
set of ResNet (form of CWT) are shown in Additional 
file 1: Figure S6. In addition, we also compared ResNet18 
model with five other neural network models including 
AlexNet, VGG16, ResNet34, DenseNet, and MobileNet 
for 80 epochs. It was observed that ResNet18 model 
demonstrated better performance when classifying with 

Fig. 5  Spectral data dimensionalization. A Raw spectral signal. B Heatmap after color mapping. C Image after continuous wavelet transform

Table 4  Performance of different spectral dimension 
enhancement methods with ResNet18 network

Method Accuracy Precision Recall F1-score

Heatmap 94.75 89.02 86.97 87.88

CWT​ 94.65 88.67 87.67 88.12
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both form of heatmap or CWT images (Additional file 1: 
Table S2 and Table S3).

Class activation map for interpretability analysis
As well known, although deep neural networks or con-
volutional neural networks provided excellent perfor-
mance in classification tasks, they still have the black-box 

explaining problem which was difficult to understand 
why they make specific predictions. Accordingly, we used 
class activation map (CAM) to analyze the interpretabil-
ity and significance of the spectral data. This could help 
us understand which parts of the spectral image ResNet 
produced a particular prediction. The application of 
CAM also contributed to the in-depth understanding for 

Fig. 6  Classification performance with Resnet18 network by heatmap transformation of serum SERS spectra. A The confusion matrix of the test set. 
B Loss function value of the test set. C Classification evaluation index of the test set. D ROC curves for all categories. E–K ROC curves and AUC values 
of HC, BC, LC, TC, CC, GC, and EC, respectively. L–O The classification evaluation metrics (Accuracy, Presicion, Recall, and F1-score) for each category
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the principle of SERS serum spectroscopy in the cancer 
classification task. The steps for CAM acquisition were as 
follows: (I) feature layers which need to be visualized were 
extracted and the weight of each channel for the tensor 
was obtained; (II) the tensor was weighted and summed 
in the channel dimension by means of linear fusion to 
obtain a map of size 7*7 grid; (III) the map was normal-
ized and resized it to the original size by interpolation. 
The mean values of the spectral data for HC, BC, LC, 

TC, CC, GC, and EC were firstly converted into heatmap 
(Fig.  7A) and CWT images (Fig.  7D), respectively. The 
weights of the output layer were then projected back into 
the convolutional feature map to identify the importance 
of the image region by CAM (Fig.  7B, E), in which the 
brighter areas of the 7*7 grid were more important. To 
intuitively understand the significance of the image area, 
CAM was superimposed in the input picture (Fig.  7C, 
F) and the red area presented the more important part, 

Fig. 7  CAM interpretability for serum SERS classification with the ResNet18 model. A, D Heatmap and CWT plot from transformed SERS spectra. B, E 
CAM feature map for Resnet18 classification. C, F CAM superimposition on the input picture
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while the blue area was the less important area. Inter-
pretative analysis showed that in the SERS spectrum of 
Resnet18 model based on heatmap, the signal intensity 
in the wave number range of 800–1000 cm−1, 400–600 
cm−1/ 800–1000 cm−1, 1200–1500 cm−1, 600–800 cm−1/ 
1000–1200 cm−1/ 1500–1800 cm−1, 1400–1600 cm−1, 
600–800 cm−1, and 1400–1600 cm−1 contributed signifi-
cantly in HC, BC, LC, TC, CC, GC, and EC classification. 
For Resnet18 model based on CWT image, the signal fre-
quency in the wave number range of 1400–1600 cm−1, 
1000–1400 cm−1, 1400–1600 cm−1, 900–1200 cm−1, 
1100–1500 cm−1, 1000–1300 cm−1, and 1600–1800 cm−1 
played critical roles in HC, BC, LC, TC, CC, GC, and EC 
classification.

Discussion
Herein, we report an easier, affordable and efficient 
multi-cancer early detection method based on serum 
SERS spectra and empowered by artificial intelligence 
analysis. In this large-scale study containing 3551 par-
ticipants and six different early-stage cancer types, serum 
SERS data combined with deep neural network or con-
volutional neural network ResNet achieved satisfying 
performance in the classification of healthy controls and 
each type of cancer patients. The number of participants, 
sample types, stable platform, and fitting algorithm 
demonstrated the robustness and generalization of our 
findings.

During the past decades, the non-invasive blood detec-
tion method based on immunological measurement has 
been effectively utilized in clinical for cancer screening. 
For example, carcino-embryonic antigen (CEA) for colo-
rectal cancer [26], carbohydrate antigen125 (CA125) for 
ovarian cancer [27], carbohydrate antigen19-9 (CA19-9) 
for pancreatic cancer [28], and alpha-fetoprotein (AFP) 
for hepatocellular carcinoma [29, 30]. These approaches 
have significant advantages including the non-invasive 
nature, automation, and relatively low cost compared 
with other clinical detection methods such as imaging 
or endoscopy examinations. However, the low sensi-
tivity and specificity of these methods for early cancer 
detection has limited their widespread use for screen-
ing purpose in a general population setting. In recent 
years, surface enhanced Raman spectroscopy (SERS) 
has attracted extensive attention in biomedical appli-
cations as a label-free and non-invasive technique [31, 
32]. Numerous studies have assessed the utility of serum 
SERS and confirmed its important role in cancer detec-
tion and monitoring [13–22, 33, 34]. Despite high sen-
sitivity, most of studies only recruited certain type of 
cancer with limited sample size. There is still a lack of 
large-scale dataset analysis with multiple cancer types. In 
our study, the 3551 participants comprised 1896 healthy 

controls and 1655 patients diagnosed with breast cancer 
(BC, n = 569), lung cancer (LC, n = 513), thyroid cancer 
(TC, n = 220), colorectal cancer (CC, n = 215), gastric 
cancer (GC, n = 100), and esophageal cancer (EC, n = 38). 
All cancer patients were stage 0, I, and II cancer accord-
ing to the AJCC staging system. It is notable that we did 
not include a large number of cases of esophageal can-
cer. One of the primary reasons is that early-stage EC are 
often asymptomatic and a considerable proportion of EC 
patients are diagnosed at advanced stage, thus further 
illustrating the importance of SERS for early screening 
of esophageal cancer. Based on AgNPs incubation, we 
conducted Raman tests and obtained SERS average spec-
trum from all serum samples. By difference spectra and 
peak analysis, significant differences were observed in the 
characteristic peaks and intensity parameter from healthy 
controls and cancer patients, indicating cogent evidence 
that there were distinct signals in SERS spectrum for 
each type of serum sample. We then performed artifi-
cial intelligent algorithm and utilized resampling strat-
egy since all cancer patients recruited in this study were 
early stage and the distribution of sample sizes for each 
type of cancer varied in real-world analysis. In general, 
most classification algorithms assume that the sample 
distribution is balanced. However, when the sample size 
is unbalanced, the classifier may be biased towards those 
categories with a larger sample size, making it easier to 
predict the category with a larger sample size, which may 
lead to a decrease in the accuracy of cancer screening [35, 
36]. Therefore, it is necessary to employ the method of 
generating new data samples for small sample categories 
to increase the number of minority class. The power-law 
based distribution strategy was introduced and five resa-
mpling approaches including SMOTE, ADASYN, Bor-
derlineSMOTE, SMOTEENN, and SMOTETomek were 
adopted and preliminary verified by deep neural network 
analysis. It was identified that the BorderlineSMOTE pre-
sented the best effect on oversampling the training set, 
especially when the modulation factor γ was set to 0.85 
(accuracy: 93.15%, precision: 88:46%, recall: 85.68%, and 
F1-score: 86.98%). Therefore, the BorderlineSMOTE 
method was applied as the final resampling strategy and 
the DNN model achieved desirable performance among 
all imbalanced classes, with the generated AUC values of 
0.991 for HC, 0.995 for BC, 0.979 for LC, 0.996 for TC, 
0.994 for CC, 0.982 for GC, and 0.941 for EC, respec-
tively. The use of power-law based BorderlineSMOTE 
method effectively increased the number of minority 
samples and the balance of data provided a positive effect 
on the performance of the deep neural network.

In recent years, image analysis is a hot spot in the field 
of artificial intelligence. Multi-layered machine learning 
networks including convolutional neural network (CNN), 
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which can extract high-level features from an input, have 
also been applied to analyze Raman spectra [17, 37–39]. 
CNN is a type of deep learning with convolutional layers 
to learn kernel weights and classically applied to image 
processing tasks. Compared to fully connected neural net-
works, this approach could decrease the number of filters 
and thus reduce its complexity. The convolutional nature of 
CNN also makes it insensitive to translations in the SERS 
spectra from instrumental and environmental differences 
[40, 41]. For the current research, one-dimensional SERS 
spectral data was processed by heatmap or continuous 
wavelet transform (CWT) and convert into two-dimen-
sional images. This approach not only eliminated addi-
tional noise in the signal but also preserved both global 
information and local features. The residual neural network 
(ResNet) was then applied to analyze the generated images 
for the classification. By combining these two methods, we 
achieved an accuracy of 94.75% (precision: 89.02, recall: 
86.97, F1-score: 87.88) for heatmap transformation and an 
accuracy of 94.65% (precision: 88.67, recall: 87.67, F1-score: 
88.12) for CWT transformation. The combination use of 
SERS spectra data and convolutional neural network were 
capable of effectively distinguishing different categories and 
making accurate predictions. One potential problem with 
deep learning, including CNN, is their need for large sets of 
training set, which can be impractical or difficult to obtain. 
In this study, the large scale of dataset and power-law-based 
resampling strategy has adequately addressed this issue. 
Additionally, we conducted class activation map (CAM) to 
analyze the interpretability and significance of the spectral 
data. By identifying the strong wave number range in CAM 
analysis, it is possible to further understand the spectral dif-
ferences among each category and provide inspiration for 
the biological mechanism of cancer diagnosis. One main 
limitation of this study was that all participants were from 
one single institution in China, although eligibility criteria 
were formulated to minimize the selective bias. Moreo-
ver, despite the broad range of cancer types captured in 
this study, the sample size was still small for some cancer 
types, precluding a full representation of heterogeneity 
within cancer types. Therefore, more cancer types with 
larger sample size should be included in future studies. In 
addition, there is still room for improvement in the inter-
pretability study. If combined with relevant biological infor-
mation, interpretability analysis could be further enhanced 
to improve the interpretation of potential information in 
serum SERS spectra for cancer screening.

Conclusions
In summary, the present investigation provides a sensitive 
platform based on SERS spectrum and reliable artificial 
intelligence DNN and CNN algorithms. The integrated 
SERS detection approach is able to distinguish major 

types of cancer from normal samples and construct a sys-
tematic cancer-related database for future exploration.
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