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Abstract 

Background Aging is a major risk factor for type 2 diabetes (T2D), but individuals of the same chronological age 
may vary in their biological aging rate. The associations of Phenotypic Age Acceleration (PhenoAgeAccel), a new 
accelerated biological aging indicator based on clinical chemistry biomarkers, with the risk of dynamic progression 
remain unclear. We aimed to assess these associations and examine whether these associations varied by genetic risk 
and lifestyle.

Methods We conducted a prospective cohort study that included 376,083 adults free of T2D and diabetes-related 
events at baseline in UK Biobank. PhenoAgeAccel > 0 and ≤ 0 were defined as biologically older and younger 
than chronological age. The outcomes of interest were incident T2D, diabetic complications, and mortality. Hazard 
ratios (HRs) with 95% confidence intervals (CIs) and population attributable fractions (PAFs) for these associations 
were calculated using multi-state model.

Results During a median follow-up of 13.7 years, 17,615 participants developed T2D, of whom, 4,524 subsequently 
developed complications, and 28,373 died. Being biologically older was associated with increased risks of transitions 
from baseline to T2D (HR 1.77, 95% CI 1.71–1.82; PAF 24.8 [95% CI 23.5–26.2]), from T2D to diabetic complications 
(1.10, 1.04–1.17; 4.4 [1.4–7.4]), from baseline to all-cause death (1.53, 1.49–1.57; 17.6 [16.6–18.6]), from T2D to all-
cause death (1.14, 1.03–1.26; 7.4 [1.8–13.0]), and from diabetic complications to all-cause death (1.32, 1.15–1.51; 15.4 
[7.5–23.2]) than being biologically younger. Additionally, participants with older biological age and high genetic risk 
had a higher risk of incident T2D (4.76,4.43–5.12;18.2 [17.5–19.0]) than those with younger biological age and low 
genetic risk. Compared with participants with younger biological age and healthy lifestyle, those with older biological 
age and unhealthy lifestyle had higher risks of transitions in the T2D trajectory, with HRs and PAFs ranging from 1.34 
(1.16–1.55; 3.7 [1.8–5.6]) to 5.39 (5.01–5.79; 13.0 [12.4–13.6]).
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Conclusions PhenoAgeAccel was consistently associated with an increased risk of all transitions in T2D progression. 
It has the potential to be combined with genetic risk to identify early T2D incidence risk and may guide interventions 
throughout T2D progression while tracking their effectiveness.

Keywords Phenotypic aging, Type 2 diabetes, Diabetic complication, Multi-state model, Genetic risk, Healthy lifestyle

Background
Type 2 diabetes (T2D) affects approximately 500 million 
adults worldwide and is projected to reach 700 million 
by 2045 [1, 2]. More than half of T2D patients develop 
diabetic complications later in life, which are the lead-
ing causes of disability and mortality [3–6]. Assessing the 
risk of T2D progression in the life course is crucial for 
timely and effective prevention and intervention. Aging 
is widely recognized as a primary risk factor for T2D [7]. 
However, individuals of the same chronological age may 
vary in their aging rate, resulting in different susceptibil-
ity to disease and death [8]. Therefore, it is essential to 
explore the role of biological aging in the incidence and 
development of T2D. Differentiating aging in individuals 
of the same chronological age, particularly in early life, 
may help identify high-risk subpopulations and aid in 
prevention to reduce the global burden of T2D [9].

Phenotypic age acceleration (PhenoAgeAccel) is a val-
uable measurement of biological age acceleration using 
clinical biomarkers, representing various aging charac-
teristics at the cellular and intracellular levels. Compared 
to previous indicators based on omics data for measur-
ing biological age, PhenoAgeAccel is easier to obtain 
and calculate. Multiple studies have demonstrated that 
PhenoAgeAccel has a strong predictive capability over 
chronological age and clinical applicability in captur-
ing morbidity and mortality across diverse populations 
[10, 11]. Previous studies have primarily found that 
PhenoAgeAccel was associated with a single transi-
tion in T2D trajectory [12–14]. However, it remained 
unknown whether PhenoAgeAccel has an impact on the 
entire dynamic progression of T2D, including transi-
tions from T2D-free (baseline) to T2D, then to diabetic 
complications, and finally to death [15]. Understand-
ing the varying impacts of PhenoAgeAccel on the risks 
of these transitions can enhance dynamic predictions of 
T2D progression, thereby preventing or delaying disease 
progression, which is significant for alleviating the global 
burden of diabetes [16]. To address this gap and promote 
the clinical application of PhenoAgeAccel, we explore 
the role of PhenoAgeAccel in all transitions within the 
T2D trajectory using multi-state models, an exten-
sion of the traditional Cox proportional hazards model, 
allowing for the simultaneous analysis of multiple sub-
sequent or competing disease pathways and assessing 
the differential impacts of risk factors at various stages 

of transition, thereby improving the overall prediction of 
event risk [17].

Notably, PhenoAgeAccel is also influenced by vari-
ous genetic and environmental factors [8]. Studies have 
shown that single nucleotide polymorphisms (SNPs) 
associated with PhenoAgeAccel are enriched in bio-
logical processes involving immunity and inflammation, 
which are closely related to T2D [18, 19]. Multi-omics 
research indicates that genetic risk may play a key role 
in the pathogenesis of T2D [20–22]. However, the joint 
effect between PhenoAgeAccel and genetic risk on the 
onset of T2D remains unclear. Additionally, studies have 
found that healthy behaviors can explain approximately 
10% of the variance in PhenoAgeAccel, suggesting that 
PhenoAgeAccel may be influenced by modifiable lifestyle 
[23]. It is necessary to investigate the joint effects of Phe-
noAgeAccel and lifestyle to provide new insights into the 
potential mechanisms through which a healthy lifestyle 
may contribute to reducing adverse health outcomes.

Using data from the UK biobank, we aimed to com-
prehensively assess the associations of PhenoAgeAccel 
with transitions from baseline to incident T2D, then to 
diabetic complications, and finally to death in the UK 
Biobank as well as whether those associations differed by 
lifestyle and genetic risk.

Methods
Study design
The UK Biobank is a large prospective cohort study, 
recruiting over 0.5 million UK residents aged 37–73 years 
between 2006 and 2010 [24]. At recruitment, each par-
ticipant completed a touch-screen questionnaire about 
demographics, socioeconomic status, and lifestyle fac-
tors. Physical measurements and biological biomarkers 
were also collected. After excluding participants who 
had withdrawn consent (n = 191), those with type 2 dia-
betes and diabetes-related events at baseline and those 
with occurrences of diabetes-related events before T2D 
diagnosis (n = 61,579), and those with missing informa-
tion on PhenoAge (n = 64,588), 376,083 participants were 
included (Additional file 1: Fig. S1).

Assessment of phenotypic age acceleration
PhenoAgeAccel indicates whether a person appears bio-
logically older or younger than expected. PhenoAgeAccel 
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was calculated based on chronological age and nine bio-
markers (including albumin, creatinine, glucose, [log] 
C-reactive protein [CRP], lymphocyte percent, mean 
cell volume, red blood cell distribution width, alkaline 
phosphatase, and white blood cell count) [18]. A negative 
value indicated phenotypic age less than chronological 
age. Details of the calculation are available in the Addi-
tional file  1. PhenoAgeAccel was classified into biologi-
cal old (< 0) and biological youth (≥ 0). Additionally, we 
categorized PhenoAgeAccel into three groups based on 
quartiles: low (bottom quantiles), medium (quantiles 
2–3), and high (top quantiles).

Follow‑up and ascertainment of outcomes
The outcomes of interest were incident T2D, diabetic 
complication, and all-cause and cause-specific mortal-
ity, ascertained from self-reported information, hospital 
admission data, and death records. Diabetes complica-
tions were defined as the co-presence of T2D and at least 
one of the following diseases: diabetic eye diseases, dia-
betic kidney diseases, diabetic neuropathy diseases, car-
diovascular diseases, and peripheral vascular diseases 
[25]. The detailed definition of outcomes is presented in 
Additional file  1: Table  S1-S2. All the participants were 
followed from their enrollment date until the date of the 
outcome of interest, death, loss to follow-up, or the study 
censoring date (31 October 2022 for England, 31 August 
2022 for Scotland, and 31 May 2022 for Wales for hospi-
tal inpatient data, and 30 November 2022 for death data], 
whichever occurred first.

Assessment of covariates
The covariates adjustment set was determined by a 
directed acyclic graph (Additional file  1: Fig. S2) [26], 
including sociodemographic factors, lifestyle behav-
iors, and health status. The assessment and categories 
of covariates are displayed in Additional file 1: Table S3. 
Missing data on covariates were replaced using multiple 
imputation by chained equations [27]. Participants with 
imputed data exhibited similar baseline characteristics to 
those without imputation (Additional file 1: Table S4).

Six lifestyle behaviors including smoking status, alcohol 
status, dietary habits, physical activity, sleep status, and 
body shape were used to calculate healthy lifestyle scores 
[28]. Each lifestyle was scored as healthy (1 point) if rec-
ommended targets were achieved. Detailed definitions 
of healthy lifestyle are presented in the Additional file 1 
[29, 30]. The overall healthy lifestyle score was the sum 
of individual scores for the six lifestyle behaviors, rang-
ing from 0 to 6, with a higher score indicating a healthier 
lifestyle. Participants were categorized into three groups: 

favorable lifestyle (5–6), intermediate lifestyle (2–4), and 
unfavorable lifestyle (0–1).

Genetic risk for T2D was assessed using the Polygenic 
Risk Score (PRS) provided by UK Biobank. The standard 
PRS was calculated for all individuals in the UK Biobank, 
trained on external data only, while the enhanced PRS 
was calculated for a testing subgroup of 104,231 individ-
uals in the UK Biobank. In our analytic sample, we had 
data for 370,030 participants to calculate standard PRS 
for T2D, and data for 78,288 participants to calculate 
enhanced PRS for T2D. PRS was classified as low (lowest 
quintile), medium (quintiles 2–4), or high (highest quin-
tile) risk [31].

Statistical analysis
Multi-state models were applied to estimate the hazard 
ratio (HR) and corresponding 95% confidence interval 
(CI) of the associations between PhenoAgeAccel and the 
trajectory from baseline to T2D, subsequently to diabetic 
complications, and finally to death. We constructed five 
transitions based on the natural trajectory of T2D and 
previous studies: (i) free of T2D to incident T2D; (ii) 
T2D to diabetic complication; (iii) free of T2D to death; 
(iv) T2D to death; and (v) diabetic complications to death 
(transition pattern A, Fig.  1A) [25]. We further consid-
ered two leading causes of death (cardiovascular disease 
(CVD) and cancer), resulting in eight transitions (tran-
sition pattern B, Fig.  1B), and repeated the multi-state 
model analysis.

To assess the impact of genetic risk on the associations, 
we explored the joint associations between PhenoAgeAc-
cel and PRS on the risk of incident T2D. Moreover, we 
also investigated the combined impact of PhenoAgeAc-
cel and lifestyle on the transitions in the T2D trajectory 
to evaluate the potential modification effect of lifestyle. 
The additive interaction was assessed by calculating the 
relative excess risk due to interaction and the attributable 
proportion due to interaction with 95% CIs.

Furthermore, we calculated the population-attributable 
fractions (PAFs) to quantify the proportion of events in 
all transitions of the T2D trajectory that would not occur 
in this population if a risk factor were eliminated, assum-
ing that these associations are causal [32]. Detailed calcu-
lation of PAFs is available in the Additional file 1 [33, 34]. 
In addition, we calculated Harrell’s C-statistics and Area 
Under the Curve under various covariates combinations 
to measure the additional predictive performance for the 
occurrence and prognosis of T2D improved by PhenoAg-
eAccel [35].

We performed several sensitivity analyses to test the 
robustness of the main results: (1) excluding participants 
who entered different states on the same date, those with 
T2D diagnosed within the first two and five years of 
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follow-up, those with cancer at baseline, or those without 
complete data of covariates; (2) recalculating the enter-
ing date of the prior state using different time intervals 
instead of 0.5 days; (3) exploring the dose–response 
relationships between PhenoAgeAccel and the risk of 
T2D progression in all transitions using restricted cubic 
spline regression [36]; (4) assessing whether the associa-
tions between PhenoAgeAccel and the T2D trajectory 
are consistent when stratified by baseline characteristics; 
(5) adjusting for the use of cholesterol and blood pres-
sure medication or the intake of exogenous hormones; 
(6) adjusting for metabolic-related biomarkers (systolic 
blood pressure, HbA1C, glucose, and total cholesterol); 
(7) retraining the coefficients in the PhenoAge construc-
tion formula using UK Biobank data through five-fold 
cross-validation and calculating a new PhenoAgeAccel to 
repeat the main analysis; (8) repeating joint effect analy-
sis between PhenoAgeAccel and lifestyle that excluding 
BMI and reclassifying lifestyle categories; and (9) using 
death caused by diabetes or diabetes complications.

Statistical analyses were conducted using R software 
(version 4.3.2). The multi-state models were constructed 
using the “mstate” package. PAR was calculated using the 
“AF” package. Two-tailed P < 0.05 was considered statisti-
cally significant.

Results
Descriptive results
Of the 376,083 participants (44.6% males, 91.2% white), 
the median age was 57 years (interquartile range: 50–63 
years) and 40.7% were biologically older. Compared 
to biologically younger participants, biologically older 
participants were more likely to be female, have lower 
income and education level, be obese, lead unhealthy 
lifestyle, and develop hypertension and high cholesterol 
(Additional file 1: Table S5-S6).

During a median follow–up period of 13.7 years (inter-
quartile range: 13.0–14.3 years), 17,615 (4.68%) par-
ticipants developed T2D. Of all incident T2D patients, 
1,710 (9.71%) died without experiencing diabetic 

Fig. 1 Transition pattern from baseline to T2D, complication, and all-cause mortality and transition pattern B from baseline to T2D, complication, 
and specific-cause mortality. The data along the arrows represent the numbers (percentages) of transitions, and data below the arrow represents 
the corresponding median time interval of transfer between different states. Diabetes complications included diabetic eye diseases, diabetic 
kidney diseases, diabetic neuropathy diseases, cardiovascular diseases, peripheral vascular diseases, and metabolic events. Complication is defined 
as the presence of at least one of the diabetes complications after the diagnosis of incident T2D. For participants entering different stages 
on the same date, we calculated the entering date of the theoretically prior state as the date of the latter state minus 0.5 days. Abbreviation: T2D, 
type 2 diabetes; CVD, cardiovascular disease
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complications, and 4,524 (25.68%) developed diabetic 
complications, and afterward, 1, 040 (22.99%) died from 
all causes (Fig.  1A). Participants with higher Pheno-
AgeAccel tended to have increased risks of developing 
T2D, complications, or death (Additional file  1: Fig S3, 
Table S7-S8).

Association between PhenoAgeAccel and transitions 
in the T2D trajectory
The relative risks of all transitions in the T2D trajec-
tory by PhenoAgeAccel category, and the corresponding 
PAFs, which quantify the proportion of events attributed 
to accelerated phenotypic aging, are shown in Table  1 
(transition pattern A). Compared with biologically 
younger participants, biologically older participants had 
significantly higher risks of all transitions. For example, 
an HR of 1.77 (95% CI 1.71 to 1.82; PAF 24.8 [95% CI 23.5 
to 26.2]) for transition from baseline to T2D indicates 
that, among all individuals at baseline, those biologically 
older had a 1.77 times higher risk of developing T2D 
compared to those biologically younger. And the HRs 
were 1.10 (95% CI 1.04 to 1.17; PAF 4.4 [95% CI 1.4 to 
7.4]) for transition from T2D to diabetic complication, 
1.53 (95% CI 1.49 to 1.57; PAF 17.6 [95% CI 16.6 to 18.6]) 
for transition from baseline to all-cause death, 1.14 (95% 
CI 1.03 to 1.26; PAF 7.4 [95% CI 1.8 to 13.0]) for transi-
tion from T2D to all-cause death, and 1.32 (95% CI 1.15 
to 1.51; PAF 15.4 [95% CI 7.5 to 23.2]) for transition from 
diabetic complications to all-cause death, respectively.
Similar associations were observed when using continu-
ous PhenoAgeAccel and quartiles of PhenoAgeAccel.

The estimated cumulative transition probabilities 
from one state to another for 55-year-old participants 
increased with time during follow-up (Additional file  1: 
Fig. S4). Biologically older participants had higher cumu-
lative transition probabilities for all transitions in the 
T2D trajectory compared with biologically younger par-
ticipants (all P < 0.05). Moreover, the model with Phe-
noAgeAccel achieved higher discriminatory power and 
better predictive performance than the model with-
out PhenoAgeAccel (average C index: 0.662 vs 0.679, 
P < 0.001; average AUC: 0.637 vs 0.655, P < 0.001, Addi-
tional file 1: Table S9).

When we decomposed all-cause mortality into CVD 
mortality and cancer mortality, we observed differential 
associations of PhenoAgeAccel with transitions from 
baseline, T2D, or diabetic complications to specific mor-
tality (transition pattern B, Table 2). Specifically, biologi-
cally older participants had a higher risk of transition 
from baseline to CVD mortality (HR 1.66, 95% CI 1.57 
to 1.76; PAF 23.0 [95% CI 20.4 to 25.5]) than to cancer 
mortality (HR 1.40, 95% CI 1.35 to 1.45; PAF 14.2 [95% 
CI 12.8 to 15.7]), and a higher risk of transition from 

diabetic complications to CVD mortality (HR 1.45, 
95% CI 1.15 to 1.83; PAF 20.8 [95% CI 8.0 to 33.7]) than 
to cancer mortality (HR 1.09, 95% CI 0.86 to 1.38; PAF 
5.1 [95% CI −9.9 to 20.1]). For the transition from T2D 
to mortality, an increase in PhenoAgeAccel per 5 years 
was associated with a higher risk of CVD mortality (HR 
1.18, 95% CI 1.06 to 1.32). No significant association was 
found between PhenoAgeAccel and the transition from 
T2D to cancer mortality.

Joint effect of genetic risk and lifestyle 
with PhenoAgeAccel
Additional file 1: Table S10 presents the significant asso-
ciation of PRS with the risk of incident T2D. Figure  2 
shows the risk of incident T2D for combined PhenoAg-
eAccel and genetic risk. Participants with older biological 
age and high standard PRS had a higher risk of incident 
T2D (HR 4.76, 95% CI 4.43 to 5.13; PAF 18.2 [95% CI 17.5 
to 19.0]) than those with younger biological age and low 
standard PRS. Similar results were found in analyses with 
enhanced PRS. Significant additive interactions of Phe-
noAgeAccel with both standard and enhanced PRS on 
the risk of incident T2D were observed (Additional file 1: 
Table S11).

The risks of transitions in the T2D trajectory according 
to lifestyle are provided in Additional file  1: Table  S12. 
These risks were higher among those who have unhealth-
ier lifestyle than those who have the healthiest lifestyle. 
Figure 3 shows the risks of transitions in the T2D trajec-
tory for combined PhenoAgeAccel and lifestyle. Com-
pared to participants with younger biological age and 
favorable lifestyle, those with older biological age and 
unfavorable lifestyle had increased risks of transitions 
from baseline to T2D (HR 5.39, 95% CI 5.01 to 5.79; PAF 
3.0 [95% CI 12.4 to 13.6]), from T2D to diabetic compli-
cations (HR 1.34, 95% CI 1.16 to 1.55; PAF 3.7 [95% CI 1.8 
to 5.6]), from baseline to all-cause death (HR 2.64, 95% CI 
2.51 to 2.78; PAF 7.5 [95% CI 7.1 to 7.9]), from T2D to all-
cause death (HR 1.62, 95% CI 1.27 to 2.06; PAF 7.2 [95% 
CI 3.8 to 10.6]), and from diabetic complications to all-
cause death (HR 1.65, 95% CI 1.20 to 2.27; PAF 8.2 [95% 
CI 3.2 to 13.2]). Significant additive interaction effects 
between lifestyle and PhenoAgeAccel were observed for 
all transitions except for the transition from T2D to dia-
betic complications (Additional file 1: Table S13).

Sensitivity analyses
The results were not substantially altered in sensitiv-
ity analyses (Additional file  1: Tables S14–S28, Fig S5). 
Although the point estimates for the association between 
phenotypic aging and progression from T2D or diabetes 
complications to death caused by diabetes or its com-
plications were greater than 1, the confidence intervals 
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Table 1 Associations between PhenoAgeAccel and transitions from baseline to T2D, complication, and death using the multi-state 
model

Abbreviation: HR hazard ratio, CI confidence interval, PAF population attributable fraction, PYs person-years, T2D type 2 diabetes
a PhenoAgeAccel was classified into two groups: biologically younger (PhenoAgeAccel ≤ 0) and biologically older (PhenoAgeAccel > 0). It was also divided into three 
quartile-based groups: low (bottom quantiles), medium (quantiles 2–3), and high (top quantiles)
b Multi-state model adjusted for age, sex, race, income, education, family history, obesity, smoking status, drinking status, physical activity, healthy diet, sleep status, 
hypertension, high cholesterol, and cancer
c PAFs at the median follow-up time of the study population were reported

Transition PhenoAgeAccela No. of cases
(Incidence per 1,000 PYs)

HRb

(95% CI)
PAF%c

(95% CI)

Baseline to T2D Per 5 years increase 17,615(3.58) 1.34(1.32,1.35)

Category

Biologically younger 7,033(2.37) Reference Reference

Biologically older 10,582(5.42) 1.77(1.71,1.82) 24.8 (23.5, 26.2)

Quantiles

Low 2,432(1.84) Reference Reference

Intermediate 8,126(3.19) 1.44(1.37,1.50) 13.3 (11.7, 14.8)

High 7,057(6.67) 2.46(2.35,2.58) 23.0 (21.9, 24.1)

P for trend  < 0.001

Baseline to Death Per 5 years increase 25,623(5.20) 1.32(1.30,1.33)

Category

Biologically younger 12,074(4.06) Reference Reference

Biologically older 13,549(6.94) 1.53(1.49,1.57) 17.6 (16.6, 18.6)

Quantiles

Low 4,861(3.68) Reference Reference

Intermediate 12,007(4.72) 1.18(1.15,1.23) 6.9 (5.5, 8.2)

High 8,755(8.28) 1.92(1.85,1.99) 16.0 (15.2, 16.9)

P for trend  < 0.001

T2D to Complication Per 5 years increase 4,524(54.24) 1.09(1.06,1.11)

Category

Biologically younger 1,702(52.14) Reference Reference

Biologically older 2,822(55.60) 1.10(1.04,1.17) 4.4 (1.4, 7.4)

Quantiles

Low 569(50.36) Reference

Intermediate 1,983(51.79) 1.06(0.97,1.17) 2.1 (−1.3, 5.5)

High 1,972(58.33) 1.24(1.12,1.36) 6.4 (3.3, 9.5)

P for trend  < 0.001

T2D to Death Per 5 years increase 1,710(20.50) 1.14(1.09,1.18)

Category

Biologically younger 635(19.45) Reference Reference

Biologically older 1,075(21.18) 1.14(1.03,1.26) 7.4 (1.8, 13.0)

Quantiles

Low 215(19.03) Reference

Intermediate 719(18.78) 1.04(0.89,1.21) 1.4 (−4.6, 7.5)

High 776(22.95) 1.34(1.15,1.56) 11.0 (5.5, 16.5)

P for trend  < 0.001

Complication to Death Per 5 years increase 1,040(68.58) 1.13(1.08,1.18)

Category

Biologically younger 320(56.81) Reference Reference

Biologically older 720(75.53) 1.32(1.15,1.51) 15.4 (7.5, 23.2)

Quantiles

Low 107(52.37) Reference Reference

Intermediate 396(61.24) 1.14(0.92,1.42) 4.6 (−3.1, 12.2)

High 537(80.67) 1.52(1.23,1.88) 16.2 (8.3, 24.2)

P for trend  < 0.001
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included 1 (Table  S28). This may be due to the small 
number of deaths, which resulted in limited statistical 
power. When stratified by sociodemographic character-
istics, the positive associations of PhenoAgeAccel with all 
transitions in the T2D trajectory were relatively consist-
ent across all subgroups (Additional file  1: Fig. S6). The 
monotonic increasing dose–response relationships fur-
ther showed positive associations between PhenoAgeAc-
cel and all transitions across the range of PhenoAgeAccel 
(Additional file 1: Fig. S7).

Discussion
In this large prospective cohort study based on the UK 
Biobank, we found that accelerated phenotypic aging was 
associated with increased risks of transitions from base-
line to T2D, then to diabetic complication, and finally 
to all-cause death. For specific-cause death, associations 
were more pronounced in transitions from baseline, 
T2D, or complications to CVD mortality compared to 
cancer mortality. We also found that participants with 
older biological age and high genetic risk had higher risks 
of incident T2D than those with younger biological age 
and low genetic risk. Participants with older biological 
age and unhealthy lifestyle had higher risks of T2D tra-
jectory compared to those with younger biological age 
and healthy lifestyle.

Several studies have found positive associations 
between accelerated biological aging and the risk of 
a single transition in the T2D trajectory [14, 37–40]. A 
meta-analysis of 156 studies revealed a significant cor-
relation between accelerated biological aging and inci-
dent T2D [37]. Additionally, a prospective cohort study 
including 5,278 T2D patients from NHANES found that 
accelerated biological aging increased the risk of pro-
gression from T2D to all-cause mortality [14]. However, 
these studies did not fully evaluate the effect of acceler-
ated biological aging on transitions across the entire tra-
jectory of T2D, failing to compare these inter-transition 
effects. Our study further provided novel insights into 
the continuous influence of accelerated biological aging 
on the trajectory of T2D by modeling the full course of 
the disease using multistate models. We found that accel-
erated phenotypic aging increased the risk of all transi-
tions in T2D trajectory. When comparing the effects of 
accelerated phenotypic aging on different transitions, we 
additionally found that the association of PhenoAgeAccel 
with transition from diabetic complication to all-cause 
death was slightly stronger than the association of Phe-
noAgeAccel with transition from T2D to all-cause death, 
suggesting a potential impact of accelerated phenotypic 
aging on premature death in patients with diabetic com-
plication [15]. Our finding highlights the importance of 
providing timely intervention for patients with T2D or 

diabetic complications to reduce the additional risk of 
mortality [41].

The potential biological mechanisms linking acceler-
ated phenotypic aging and risk of transitions in the T2D 
trajectory have been proposed. Several large population-
based studies and their meta-analyses have shown that 
a higher PhenoAgeAccel value is a proxy of abnormal 
biomarkers, which play an important role in the develop-
ment of inflammation and insulin resistance, potentially 
increasing the risk of T2D development [42–44]. This 
may elucidate our finding that accelerated phenotypic 
aging was associated with an increased risk of incident 
T2D. Additionally, T2D itself may represent a pro-aging 
state, as metabolic changes caused by T2D, such as 
hyperglycemia and altered lipid metabolism, stimulate 
the formation of senescent cells [45]. These senescent 
cells further play a major role in the development of 
various diabetic complications [46, 47]. This may explain 
why we found a higher risk associated with accelerated 
phenotypic aging in the transition from T2D to diabetic 
complications.

When regarding cause-specific mortality, we also found 
that accelerated phenotypic aging was associated with 
higher risks of transitions from baseline, T2D, or diabetic 
complications to CVD mortality than cancer mortality. A 
NHANES study from the US involving 5,278 T2D partic-
ipants found that each 1-year increase in PhenoAgeAc-
cel was associated with a 4% increase in both CVD and 
cancer mortality using traditional Cox regression models 
[14]. Using multi-state models, we also found that accel-
erated phenotypic aging significantly increases the risk 
of transitions from T2D to all-cause and CVD mortality. 
However, regarding cancer mortality, we did not find sig-
nificant associations between PhenoAgeAccel and tran-
sitions from T2D and diabetic complications to cancer 
mortality. The differences in cancer mortality between 
the NHANES study and our study may be attributed to 
the incomparability of estimates due to the distinct ana-
lytic strategies and statistical models. Compared with 
the traditional Cox regression models used in previ-
ous studies, the multi-stage models can decompose this 
transition into three mutually exclusive transitions: from 
T2D alone to diabetic complications, from T2D alone to 
cause-specific death, and from diabetic complications to 
cause-specific death, allowing for the assessment of inde-
pendent effects of PhenoAgeAccel on each transition.

Previous research demonstrated that PRS may serve 
as an indicator of genetic risk and is associated with the 
risk of incident T2D [48]. The same result was found in 
our study. We further observed that high genetic risk 
strengthened the association of PhenoAgeAccel and the 
risk of incident T2D. Genes associated with accelerated 
phenotypic aging, such as the APOE e4 determinant, 
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Table 2 Associations between PhenoAgeAccel and transitions from baseline, T2D, complication, to specific death using the multi-
state model

Transition PhenoAgeAccela No. of cases
(Incidence per 1,000 
PYs)

HRb (95% CI) PAF%c (95% CI)

Baseline to cancer mortality Per 5 years increase 13,480(2.74) 1.26(1.25,1.28)

Category
Biologically younger 6,728(2.26) Reference Reference

Biologically older 6,752(3.46) 1.40(1.35,1.45) 14.2 (12.8,15.7)

Quantiles
Low 2,738(2.07) Reference Reference

Intermediate 6,534(2.57) 1.16(1.11,1.22) 6.5 (4.7,8.4)

High 4,208(3.98) 1.69(1.61,1.78) 13.1 (11.9,14.3)

P for trend  < 0.001

Baseline to CVD mortality Per 5 years increase 4,696(0.95) 1.34(1.31,1.37)

Category
Biologically younger 2,055(0.69) Reference Reference

Biologically older 2,641(1.35) 1.66(1.57,1.76) 23.0 (20.4,25.5)

Quantiles
Low 758(0.57) Reference Reference

Intermediate 2,200(0.86) 1.33(1.23,1.45) 11.2 (8.2,14.2)

High 1,738(1.64) 2.26(2.07,2.47) 21.8 (19.7,24.0)

P for trend  < 0.001

T2D to cancer mortality Per 5 years increase 927(11.11) 1.04(0.99,1.11)

Category
Biologically younger 367(11.24) Reference Reference

Biologically older 560(11.03) 1.04(0.91,1.20) 2.5 (−5.2,10.2)

Quantiles
Low 129(11.42) Reference Reference

Intermediate 412(10.76) 1.01(0.83,1.23) 0.4 (−8.3,9.1)

High 386(11.42) 1.14(0.93,1.39) 4.8 (−2.8,12.4)

P for trend 0.115

T2D to CVD mortality Per 5 years increase 207(2.48) 1.18(1.06,1.32)

Category
Biologically younger 77(2.36) Reference Reference

Biologically older 130(2.56) 1.09(0.81,1.45) 5.0 (−12.1,22.1)

Quantiles
Low 23(2.04) Reference Reference

Intermediate 88(2.30) 1.14(0.72,1.82) 5.2 (−12.1,22.5)

High 96(2.84) 1.44(0.91,2.29) 14.6 (−2.0,31.2)

P for trend 0.065

Complication to cancer mortality Per 5 years increase 316(20.84) 1.03(0.94,1.12)

Category
Biologically younger 106(18.82) Reference Reference

Biologically older 210(22.03) 1.09(0.86,1.38) 5.1 (−9.9,20.1)

Quantiles
Low 39(19.09) Reference Reference

Intermediate 125(19.33) 0.97(0.68,1.40) −1.0 (−16.0,13.9)

High 152(22.83) 1.10(0.76,1.57) 4.0 (−11.9,19.8)

P for trend 0.431
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are enriched in immune system pathways, which are 
also associated with an increased risk of developing type 
2 diabetes [19, 49]. Therefore, individuals with a high 
genetic risk may be more likely to experience accelerated 

aging, aggregating the risk of developing T2D. This result 
suggests that PhenoAgeAccel could be combined with 
genetic risk for T2D risk identification. Given the valid-
ity and accessibility of PhenoAgeAccel, it holds promise 

Abbreviation: HR hazard ratio; CI confidence interval, PAF population attributable fraction, PYs person-years, T2D type 2 diabetes, CVD cardiovascular disease
a PhenoAgeAccel was classified into two groups: biologically younger (PhenoAgeAccel ≤ 0) and biologically older (PhenoAgeAccel > 0). It was also divided into three 
quartile-based groups: low (bottom quantiles), medium (quantiles 2–3), and high (top quantiles)
b Multi-state model adjusted for age, sex, race, income, education, family history, obesity, smoking status, drinking status, physical activity, healthy diet, sleep status, 
hypertension, high cholesterol, and cancer
c PAFs at the median follow-up time of the study population were reported

Table 2 (continued)

Transition PhenoAgeAccela No. of cases
(Incidence per 1,000 
PYs)

HRb (95% CI) PAF%c (95% CI)

Complication to CVD mortality Per 5 years increase 364(24.00) 1.12(1.04,1.21)

Category

Biologically younger 107(18.99) Reference Reference

Biologically older 257(26.96) 1.45(1.15,1.83) 20.8 (8.0,33.7)

Quantiles

Low 35(17.13) Reference Reference

Intermediate 135(20.88) 1.21(0.83,1.76) 6.3 (−6.2,18.8)

High 194(29.14) 1.72(1.19,2.49) 21.3 (8.5,34.2)

P for trend  < 0.001

Fig. 2 Joint effects of PhenoAgeAccel and genetic risk on risk of incident T2D. Cox proportional hazard regression model adjusted for age, sex, race, 
income, education, family history, obesity, smoking status, drinking status, physical activity, healthy diet, sleep status, hypertension, high cholesterol, 
cancer, genotyping batch, and genetic principal components. PAFs at the median follow-up time of the study population were reported. 
Abbreviation: HR, hazard ratio; CI, confidence interval; PYs, person-years; PAF, population attributable fraction; T2D, type 2 diabetes; PRS, polygenic 
risk score
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as a novel clinical composite biomarker for guiding the 
precise prevention of T2D in high-risk populations. 
Additionally, our study provides novel evidence about 
the joint effects of lifestyle with PhenoAgeAccel on T2D 

trajectory from healthy to T2D, then to diabetic compli-
cations, and finally to death. Previous studies have found 
that unhealthy lifestyle increases the risk of developing 
T2D [50, 51]. However, the impact of lifestyle on the T2D 

Fig. 3 Joint effects of PhenoAgeAccel and lifestyle on risk of transitions in T2D trajectory. Multi-state model adjusted for age, sex, race, income, 
education, family history, hypertension, high cholesterol, and cancer. PAFs at the median follow-up time of the study population were reported. 
Abbreviation: HR, hazard ratio; CI, confidence interval; PYs, person-years; PAF, population attributable fraction; T2D, type 2 diabetes
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trajectory and its joint effect with PhenoAgeAccel remain 
unclear. We observed that unhealthy lifestyle increases 
the risk of T2D trajectory and unhealthy lifestyle further 
enhanced the association of PhenoAgeAccel and the risk 
of T2D trajectory. Unhealthy lifestyle, such as lack of 
exercise and insufficient sleep, can elevate oxidative and 
inflammatory responses in the body, which are the pri-
mary pathways through which accelerated aging impacts 
health [7, 52]. These findings suggest that PhenoAgeAccel 
may serve as a potential intermediate phenotype to assess 
the impact of lifestyle interventions and other treatments 
on slowing aging, thereby slowing T2D progression and 
reducing the burden of complications [53, 54].

Several strengths of this study are as follows. Firstly, 
the use of a multi-state model enables us to compare the 
impacts of PhenoAgeAccel on the different transitions of 
the T2D trajectory and rule out the competing risk from 
death compared with traditional Cox regression mod-
els. Secondly, the large sample size of the UK Biobank 
provided sufficient statistical power to these analyses, 
and the prospective nature allowed for a clear tempo-
ral sequence between exposure and outcome, reducing 
potential reverse causation. Additionally, a series of sen-
sitivity analyses confirmed the robustness of our results. 
Finally, the wide range of individual-level information 
on sociodemographic factors, lifestyle factors, and medi-
cal conditions collected in the UK Biobank enables us 
to minimize confounding bias as much as possible and 
explore potential effect modifications.

This study also has some limitations. Firstly, we cal-
culated PhenoAgeAccel at baseline but failed to include 
time-varying measurements for PhenoAgeAccel or 
other covariates in our analysis. Although our use of a 
multi-state model allows covariate effects to vary across 
different stages of disease progression, the absence of 
time-varying covariates may limit our ability to fully 
capture changes in these covariates over time. Future 
studies could utilize longitudinal data to explore associa-
tion between changes in biological age and disease pro-
gression after controlling for significant time-varying 
confounding, and investigate whether the reversal of 
biological aging may reduce the risk of disease progres-
sion. Secondly, most participants in the UK Biobank were 
white, limiting the generalizability of the study findings to 
populations with different genetic backgrounds. Further 
research is needed to validate our results in more diverse 
populations. Thirdly, the participants in the UK Biobank 
were healthier than the general UK population and less 
susceptible to accelerated aging, which may have led to 
conservative results due to healthy volunteer bias [55, 
56]. Finally, the definition and classification criteria for 
lifestyle in our study may not fully capture the variation 
in lifestyle habits. However, using different definitions 

and categorizations of lifestyle yielded similar results on 
the combined effect of lifestyle and PhenoAgeAccel.

Conclusions
Our study indicates that participants with accelerated 
phenotypic aging have higher risks of T2D occurrence 
and progression compared to those with unaccelerated 
phenotypic aging. PhenoAgeAccel may serve as an effec-
tive tool, in combination with genetic risk, for identify-
ing the incidence risk of T2D at an early stage, and as 
an intermediate phenotype to guide interventions at all 
stages of T2D progression and to track the effectiveness 
of those interventions.
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